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The low-density expansions of the concentration of monomers, dimers, trimers, and the mean 
cluster size are computed exactly, up through three-body cluster integrals, for a continuum­
percolation model of spheres characterized by both exclusion-volume repulsions and short­
range attractions. The compactness of trimers for our model is studied in the dilute limit. 
Interestingly, the [1,1] Pade approximant of the mean cluster size yields percolation 
thresholds which exhibit the proper qualitative dependence on the strengths of the repulsive 
and attractive interactions. The predicted thresholds agree qualitatively well with the trends 
reported in a Monte Carlo study by Bug et al. 

I. INTRODUCTION 

There has been a recent upsurge of interest in the phys­
ical clusters of particles which are formed in disordered mul­
tiphase media and in liquids. 1-12 A singularly important case 
of physical clustering occurs at the percolation transition, 
the point at which a cluster becomes infinite in size. Percola­
tion phenomena arise in a variety of applications, such as 
transport properties of composite materials or microemul­
sions, gelation, conductor-insulator transition in metals 
with disorder, and the glass transition. Much of the previous 
work regarding physical clustering has been restricted to lat­
tice models (see the review by Essam3

). More recently, in­
vestigators have focused their attention on the study of clus­
tering in "continuum" models of percolation' ·

2.4- '2 since 
such models, although less tractable than their lattice coun­
terparts, are better able to capture the essential physical 
aspects of real systems. 

Considerable effort has been made to determine perco­
lation thresholds, critical exponents, and the mean cluster 
size of continuum models using integral equation tech­
niques,2,6,8,9 position-space renormalization group meth­
ods,5 and Monte Carlo simulations. 4, 7,11 Except for the stud­
ies of Haan and Zwanzig' and Post and Glandt,1O however, 
there is a dearth of work on the determination of the concen­
tration of clusters of various sizes, cluster shapes, distribu­
tion of coordination numbers, etc.-problems which cannot 
be attacked using integral-equation or renormalization­
group methods. Hill13 was the first to study the extent of 
physical clustering of an imperfect gas in equilibrium by de­
riving low-density series expansions for the concentrations 
of various cluster sizes (monomers, dimers, trimers, etc.) in 
terms of the interparticle interactions. The purpose of this 
study is to obtain these and other series expansions for sys­
tems of particles (described below) characterized by both 
excluded-volume repulsions and short-range attractions. As 
in the work of Bug et al. 7 the central question is "Do interac­
tions inhibit or enhance cluster formation?" 

a) Author to whom all correspondence should be addressed. 

Haan and Zwanzig ' obtained series expansions in den­
sity for low-order cluster concentrations, mean cluster size, 
and other quantities for randomly placed geometric objects 
of various shapes. Thus, they considered the limit in which 
these objects are spatially uncorrelated or are "fully penetra­
ble" to one another. Post and Glandt lO determined such re­
sults in the opposite limit of totally impenetrable spheres 
which interact with one another through a surface adhe­
sion. 14 This model due to Baxter'4 is defined through the 
pair interaction 

{ 

+ 00, O<;r<;d 

{3u(r) = - In CT ,d<;r<;CT (1.1) 
12r(CT- d) 

0, r,;;>CT 

in the limit d -+ CT. Here the parameter r plays the role of a 
dimensionless temperature and CT is the diameter of a sphere. 
As r- 00, the adhesive interaction or "stickiness" vanishes 
and the model reduces to the simple hard-sphere fluid. 
Hence, the quantity r- I is the stickiness or adhesiveness. 

In this paper we seek to determine low-density expan­
sions for the concentrations of monomers, dimers, trimers, 
and the mean cluster size (up through three-body cluster 
diagrams) for a model system of spheres which incorporate 
exclusion-volume repUlsions through the penetrable-con­
centric-shell (PCS) 15 model and attractive interactions 
through Baxter's adhesive-sphere model. In the PCS model 
(depicted in Fig. I), spheres of diameter CT are statistically 
distributed throughout space subject only to the condition of 
a mutually impenetrable core of radius ACT /2, O';;A';; 1. Each 
sphere of diameter CT, therefore, is composed of an impen­
etrable core of diameter ACT encompassed by a perfectly pene­
trable concentric shell of thickness (1 - A )CT/2. The ex­
treme limits A = OandA = 1, correspond to the cases offully 
penetrable (i.e., randomly centered) and totally impenetra­
ble spheres, respectively. In this article, we superpose a Bax­
ter-type surface adhesion on the surface of the inner hard 
core of radius ACT/2. Note that through the same order in 
density, both the Haan-Zwanzig and Post-Glandt results 
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FIG. 1. A computer-generated realization of a distribution of disks of diam­
eter u (shaded region) in a matrix (unshaded region) in the pes model 
(Ref. 15). The disks have an impenetrable core of radius Au/2 (black circu­
lar region). Here A = 0.5 and the particle area fraction is 0.3. In the more 
general model of the present study, we add a Baxter-type surface adhesion 
on the surface of the inner hard core. 

are special cases of the more general results obtained here for 
arbitrary A. and r; the Haan-Zwanzig results are recovered 
when A. = 0 and r-+ 00 and the Post-Glandt results are re­
covered when A. = 1. The distance (1 - A.)o/2 may be 
thought of as the range over which an excitation may "hop" 
from one particle to another.7 DeSimone et al.9 have noted 
that the pure PCS model (without stickiness) may serve as a 
useful first step in studying percolation in liquid water and in 
liquid metals. 

The rest of the paper is organized as follows. In Sec. II, 
we describe the general formalism to obtain expansions of 
the concentration of It-mers and the mean cluster size in 
powers of the overall particle density. In Sec. III, we discuss 
our model system and evaluate the first few virial coefficients 
for the aforementioned quantities up through three-body 
cluster integrals. In Sec. IV, we discuss the effect of the im­
penetrability parameter A. and the strength of the adhesion 
r- I on the concentration of n-mers and the mean cluster 
size. The effect of A. and r- I on the compactness oftrimers in 
the dilute limit is examined. We also obtain the [1/1] Pade 
approximant from the density expansion of the mean cluster 
size for arbitrary A. and r and show that the Pade approxi­
mant captures the salient features of the percolation thresh­
old. 

II. THE CLUSTER SIZE DISTRIBUTIONS AND THE PAIR 
CONNECTEDNESS 

Using the grand canonical formalism, Hill l3 was the 
first to describe physical clusters in terms of "effective" po­
tentials between bound and unbound particles. Specifically, 
in the notation of Coniglio et ai.,2 we decompose the Boltz­
mann factor e(r) = exp[ - u(r)lkT] for the system into 
two contributions: 

e(r) = e+ (r) + e* (r), 

where 

e+ (r) = exp[ - u+ (r)/kT] 

and 

e*(r) = exp[ - u*(r)/kT]. 

(2.1) 

Here u+ and u* are the effective potentials associated with 
bound and unbound pairs of particles, respectively, k is the 
Boltzmann constant, and Tis the absolute temperature. The 
Mayer function fer) = e(r) - 1 of the system can also be 
separated into contributions for bound and unbound pairs: 

fer) =f+(r) + f*(r), (2.2) 

where 

f*(r) = e*(r) - I (2.3) 

and 

f+(r) = e+(r). (2.4 ) 

When Eq. (2.1) is used in the expression for the grand ca­
nonical partition function, one may obtain its fugacity ex­
pansion. From this quantity, one may obtain the equilibrium 
concentration ofn-mers,Pn, as a power series in the number 
density 13. 16 P = N IV, where Nis the total number of part i­
cles in the system and V is the volume of the system. The 
density expansion for the cluster size distribution is written 
as 

'" 
Pn = L Bj,np

i (2.5) 
j=n 

under the constraint that 

(2.6) 

The latter follows from the requirement that the total num­
ber of particles in the system is a sum of the number of parti­
cles in each physical cluster. Equation (2.6) holds in the 
presence of finite clusters only (Le., below the percolation 
threshold) . 

In the following diagrammatic representations of clus­
ter integrals, let a black circle represent a P point whose 
coordinates have to be integrated over, a white circle be a 
root point, a full line representf+ (r) and a wavy linef* (r). 
Then the densities of monomers, dimers, and trimers are 
given by13.16 

Ip - 1. [ • __ + 1. /\ _ A _ 1 /\ -.!. /\ +O(p4) 1 
1- V 2' 1. ~ 2~ 2tt-:::. • 

3P3 = ~ [1 A + t A + t.6. + O(p~ ] • 

(2.7) 

(2.8) 

(2.9) 

Note that the graphs presented in this paper do not contain 
any implicit symmetry factor. Higher-order terms (n~4) 
may be obtained using diagrammatic analysis of Stell. 17 

The mean cluster sizel8 is given by 

l:'" n2p 
S(p) = n= I n (2.10) 

P 
Clearly, Sbecomes infinite at the percolation threshold. The 

J. Chem. Phys., Vol. 89, No.6, 15 September 1988 

Downloaded 27 Sep 2010 to 128.112.70.51. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



A. K. Sen and S. Torquato: Continuum-percolation models 3801 

mean cluster size can be alternately defined in terms of the 
pair-connectedness function, g+(r). This function is de­
fined2 such that pZg+(rl,rz)drl drz is the probability that 
two particles within the volume elements dr 1 and dr 2 around 
r l and r 2, respectively, are physically connected. The pair­
connectedness function may be obtained from a decomposi­
tion of the pair correlation function g(r l,r2) into "connect­
ed" and "disconnected" contributions. For any isotropic 
system, the pair or radial distribution function is decom­
posed as2 

g(r) =g+(r) +g*{r), (2.11) 

where g+ (r) is defined to consist of all the graphs of the 
density expansion of g(r) containing at least one path off+ 
bonds between the root points separated by the distance r. 
The remaining terms define the blocking function g* (r) . 
Coniglio et al.2 have shown that the mean cluster size is relat­
ed to the pair connectedness by 

S(p) = 1 +p f g+(r) dr. (2.12) 

The pair-connectedness function expanded through 
first order in p is given by 

g+(f12)=M + 1\ + A + La + ~ 
12121212 

+ A + A +O(p2). 

1 2 1 2 (2.13) 

Substitution ofEq. (2.13) into Eq. (2.12) gives 
00 

S(p) = L Sj+ Ipj (2.14 ) 
j=O 

which is equivalent to Eq. (2.10). HereSI == 1. Note that we 
denote the nth-order density coefficient of Eq. (2.14) as 
Sn + 1 (instead of Sn ) because the integrals associated with it 
are (n + 1 )-body cluster diagrams. Note also that the coeffi­
cients Sj are not independent of the density coefficients Bj,n 
defined in Eq. (2.5). The relation between them may be ob­
tained by substituting Eq. (2.5) into Eq. (2.10), which leads 
to 

eo 00 

S(p) = L L n2Bj,np J-1 

n= Ij= 1 

00 1+1 
= L L n2Bj + l,npj· 

j=On=1 

Comparison of Eq. (2.15) with Eq. (2.14) gives 

(2.15 ) 

(2.16) 

In keeping with the spirit and language ofthe statistical me­
chanics of imperfect gases, we refer to the Bj,n and Sn as the 
"virial" coefficients associated with the concentration of n­
mers and mean cluster size, respectively. 

III. MODEL SYSTEM AND ASSOCIATED CLUSTER 
INTEGRALS 

The model we consider consists of identical spheres of 
diameter 0". Each sphere is made up of two parts: an inner 

hard core of diameter AO" and a penetrable concentric shell 
(PCS) of thickness (1 - A)0"/2. We also add a Baxter-type 
surface adhesion on the surface of the hard core [which re­
places 0" by AO" in Eq. (1.1)]. Thus, we have an attractive 
interaction precisely at the radius AO"/2. In this model, the 
unbound and bound contributions to the Mayer function 
are, respectively, 

f*(r) = {- 1, O,r,O" (3.1) 
0, r> 0" 

and 

f+(r) =fp+(r) +f{j+(r). (3.2) 

Here 

{

O' O,r,AO" 
fp+(r)= 1, AO"<r,O" 

0, r> 0" 

(3.3 ) 

is the contribution to the connected part of the Mayer func­
tion due to penetrability and 

ft (r) = ~ o(r - AO") 
12.,.. 

(3.4) 

is the contribution to f+ due to the o-function attraction. 
Thus the full line, which represents anf+ bond in the dia­
grams of the previous section, now consists of two parts: a 
full line with a letter p below it representing anf p+ bond and 
a dashed line representing an f 13+ bond; diagrammatically, 
this means 

0--0 = 
1 2 

0-::--0 
1 P 2 

+ 0---0 . 
1 2 

(3.5) 

We remark further thatf p+ may be written as a combination 
of f* for two different spheres, as follows: 

f/ (r) = 1"'1.(r) - f*(r), (3.6) 

. where 

f * ) - { - 1, O<r<AO" ,tCr - . 
0, r>AO" 

(3.7) 

Thus,J!(r) is thef· function for a sphere of diameter AO". If 
we denote anf! (r) bond by a wavy line with the symbol A 
below it, then we may write 

0--0 = 
1 2 
~ 
1 A. 2 

Q.I\N'O 
1 2 

+ 0-----0. 
1 2 

(3.8) 

We now briefly describe how we compute the virial ex­
pansions for the distribution of clusters and the mean cluster 
size. First we replace all the full lines in expressions (2.7)­
(2.9) (for the concentration ofthe n-mers) and expression 
(2.14) (for the mean cluster size) by the right-hand side of 
Eq. (3.8). Next the resulting cluster integrals are evaluated 
up to three-body graphs using the prescription outlined in 
the Appendix. 

IV. RESULTS AND DISCUSSION 

In this section, we study the effects of the impenetrabil­
ity parameter A and of stickiness .,..-1 on the cluster size con­
centrationsPn and mean cluster sizeS forlowdensities. We 
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also compute a low-order Pade approximant of the series for 
S in order to estimate its behavior at higher densities. 

For some fixed low density, we show that: (i) for non­
sticky spheres ('T = (0), a decrease in A (i.e., an increase in 
the thickness of the penetrable concentric shell) enhances 
cluster formation, as expected, and (ii) for sticky spheres ('T 

finite), a decrease in A does not necessarily enhance cluster 
formation, i.e., in some cases, a decrease in A will inhibit 
cluster formation. 

For arbitrary densities, we demonstrate that (i) for non­
sticky spheres, formation of very large clusters may either be 
enhanced or inhibited by decreasing A, and (ii) increasing 
the stickiness for fixed A does not always promote the forma­
tion of very large clusters. 

A. Vi rial expansions 

Using the procedure to evaluate cluster integrals de­
scribed in the previous section, we obtain exact analytical 
expressions for the first few virial coefficients of series (2.5) 
and (2.14) for our model: 

BI,I = 1, (4.1) 

B2,I = - VI [8(l-A 3
) + ~ ,.1,2], (4.2) 

B3,\ = V; [ (32 - 96,.1, 3 + 18,.1, 4 + 46,.1, 6) 

+ ~ (24,.1, 2 _ 6,.1, 3 _ 23,.1, 5) 
'T 

+ _7_ ,.1,4 __ 1_ A 3] (4.3) 
2'T 2 12'T 3 ' 

B2,2 = VI [4(1-A 3
) + ! ,.1,2] = - ~ B2,\, (4.4) 

B3,2 = V~ [( - 49 + 96,.1, 3 + lSA 4 _ 65,.1, 6) 

- !(24A
2

+6,.1, 3
- ~ AS) 

- 'T42 ,.1,4], (4.5) 

B3,3 = Vi [ (22 - 3U 3 - lSA 4 + 28,.1, 6) 

+ ~ (SA 2 + 6,.1, 3 _ 14,.1, 5) 
'T 

+_3_,.1,4+_1_,.1,3], (4.6) 
2'T 2 36'T 3 

SI = 1, (4.7) 

S2= VI[80-A 3
) + ~ A 2J = -B2,t> (4.8) 

S3 = Vi [ (34 - 7U 4 + 3SA 6) 

+ ~ (24,.1, 3 _ 19,.1, 5) + _I_A 4 + _I_A 3J. 
'T 'T2 6'T 3 

(4.9) 

Here VI = 1Too 316 is equaIto the volume of a sphere of diam­
eteroo. 

Note that in the limit of fully penetrable spheres 
(A = 0), our results reduce to the Haan-Zwanzig l results to 
the same order in density (with the choice VI = 1/4). In the 
opposite limit of impenetrable spheres (A = 1), we obtain 
the Post-Glandt5 results (with choice VI = 1) to the same 
order in density. For arbitrary A and'T, the virial expansions 
given above are new. 

The effects of A and 'T on cluster formation are generally 
subtle. The case offully penetrable spheres (A = 0) and fin­
ite stickiness is a degenerate one, since all the results for the 
Pn and Sbehave as if the stickiness term is absent. The reason 
for this is that the adhesiveness in our model is present only 
on the surface of the inner hard core; but for A = 0, this inner 
hard core vanishes, and hence its surface area available for 
cluster formation (due to surface adhesion only) is identi­
cally zero. In general, the effect of surface adhesion becomes 
more pronounced as the spheres become less penetrable (i.e., 
as A. increases). In what follows, we discuss the effects of A. 
and 'Ton thepn and Sin detail. Density-dependent quantities 
shall be expressed in terms of the reduced density 
7J =p1Too 3/6 =pV •. 

First, we note that the second virial coefficients for PI' 
P2' and S(p) are equivalent except for some constant multi­
plying factors [cf. Eqs. (4.2), (4.4), and (4.8)]. The abso­
lute value of the first term of each ofthese coefficients mono­
tonically decreases to zero as impenetrability increases, but 
the absolute value of the second term, proportional to the 
stickiness, monotonically increases as A. approaches 1. Thus, 
in these cases, the effects of impenetrability and surface ad­
hesion are directly competing. Consequently, B 2, I has a min­
imum and B 2,2 and S2 have maxima (for fixed 'T) at 

( 4.10) 

The third virial coefficients for the P n and S depend on A. 
and 'T in a somewhat more complicated fashion. We present 
these coefficients as a function of A. (for various values of'T) 
in Figs. 2-5. It is seen that the third virial coefficients (as do 
the second virial coefficients) go to zero in the impenetrable, 
nonadhesive sphere limit (A. = I, 'T = (0), and each coeffi­
cient, for all 'T, start from the same point at A. = O. For non­
sticky spheres ('T = (0), the absolute magnitudes of the vir­
ial coefficients have their maxima at A. = 0; i.e., the limit 
corresponding to fully penetrable spheres. As the strength of 
adhesion increases, the positions of these maxima shift from 
o to 1. One may easily obtain a quintic equation for these 
maxima as a function of'T. 

In Figs. 6 and 7, we plot the concentration of monomers, 
dimers. and trimers (normalized by the overall particle den­
sity p) as a function of the impenetrability parameter A for 
nonsticky spheres and sticky spheres (for which 'T = 1.0), 
respectively. In each figure, we give the cluster size concen­
tration for two (low) reduced densities of 7J = 0.01 and 0.05. 
The trimer concentration in each case is so small at 7J = 0.01 
that it is barely distinguishable from the A axis. For non-
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40,---------------------------~ 

30 

20 

10 

o 

-10~----_r----~----~----~----~ 
0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 2. The third virial coefficient B"t for the monomer concentration, as a 
function of the impenetrability parameter A for several values of the inverse­
stickiness parameter: T = 00, I, 1/2, and 1/3. 

sticky spheres, when A. = 1, the dimer and the trimer con­
centration is zero and the monomer concentration equals the 
overall particle density at both the densities. For fixed A. < 1, 
as the system density increases, the concentration of higher­
order clusters are expected to increase at the cost of a de­
crease in the monomer concentration. This is borne out in 
Figs. 6 and 7. 

For a fixed density, as A. is increased, the concentrations 
of dimers and trimers first increase up to a maximum value 
and then decrease as A. is increased further, provided the 
maximum occurs for A. <1. For nonsticky spheres at a re­
duced density of 0.01 (Fig. 6), this maximum for dimers 

10 

0 

-10 

-20 

B3,2 
-30 

-40 

-50 

-60 
0.0 0.2 0.4 0.6 0,8 1.0 

FIG. 3. As in Fig. 2 for the third virial coefficient B'.2 for the concentration 
ofdimers. 

30,---------------------------~ 

25 

20 

B3,3 

15 

10 

5 

0 
0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 4. As in Fig. 2 for the third virial coefficient B,,3 for the concentration 
oftrimers. 

occurs at a A. :::::0.0. At a reduced density of 0.05, the same 
maximum occurs at aA.:::::0.62. Through third order in den­
sity, P3 for nonsticky spheres monotonically decreases with 
increasing A. for both 1/ = 0.01 and 0.05. For a stickiness 
r- I = 1.0, the maxima for dimers occur at A. = 0.16 and at 
0.78, for 1/ = 0.01 and 0.05, respectively. For the same sticki­
ness, the trimer concentration is maximum at A. :::::0.18 inde­
pendent of 1/. The explanation for these observations be­
comes clearer by invoking the constraint relation (2.6). We 
have exactly, through third order in density, that 

PI + 2P2 + 3p3 =P + O(p4) 

= constant (for a fixedp). (4.11 ) 

50,-------------------------------~ 

40 

30 

20 

10 

O~----~----~----,_----,_--~ 

0.0 0.2 0.4 0.6 0.8 1.0 

FIG. 5. As in Fig. 2 for the third virial coefficient S3 for the mean cluster 
size. 
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1.0-y-------------:::::::::~ 

0.8 

0.6 

1'=00 

0.4 

FIG. 6. Normalized n-mer concentrations (P./p, n = 1,2,3) for nonsticky 
spheres (T = <Xl) as a function of impenetrability parameter 4. Each n-mer 
concentration is shown at two different reduced densities 71 = 1I'U 3 p/ 
6 = 0.Ql and 0.05. 

For nonsticky spheres, as A is increased, the probability of 
forming the largest finite-sized cluster (trimer in this case) 
must decrease monotonically. Now since the rate at which 
dimers break up into monomers initially is less than the rate 
at which trimers break up into dimers and monomers, P2 
initially increases until some maximum value and then de­
creases beyond this value of A because of exclusion-volume 
effects. In the case of sticky spheres, on the other hand, even 
though the constraint relation (4.11) still holds, the behav­
ior of P3 is not as simple as in the case 7' = 00, since now 
increasing the stickiness may enhance the formation of 
trimers for a range of A; thus, for fixed A, P3 goes through a 
maximum as discussed earlier. 

1.0,.----------------:::1 

0.8 

0.6 

1'= 1.0 

0.4 

FIG. 7. As in Fig. 6 for sticky spheres with T = 1. 

Figures 8 and 9 show the mean cluster size S( 'TJ) as a 
function of reduced density (up to 'TJ = 0.2) for two different 
values of 7', at various A. S( 'TJ), in each case, is always mono­
tonically increasing with increasing 'TJ. Figure 8 shows re­
sults for the pure PCS model without stickiness. The mean 
cluster size remains unity for all densities in the impenetra­
ble-sphere limit. Figure 8 also demonstrates that the mean 
cluster size, for a given value of'TJ, increases monotonically as 
A ..... O. At low densities this result is expected on the grounds 
that the probability of pairwise overlap increases as A ..... O. It 
is noteworthy that the mean cluster size, at a fixed density, 
changes by a very small amount (on the scale of our figure) 
as one changes the hard-core diameter from zero to a value 
up to about a quarter of the full diameter (0') of the spheres. 
For A as high as 112, the mean cluster size lies much closer to 
the corresponding quantity for A = 0 than to unity (Le., S 
for A = 1). This indicates that the percolation threshold 
should not change significantly in the range ofO";;A < 112-
an observation confirmed by Monte Carlo calculations.7 

For nonzero A, the mean cluster size S( 'TJ), at fixed 'TJ, 
increases as the stickiness 7'-1 increases. In Fig. 9, we plot 
S( 'TJ) for 7' = 113. It is important to note that as the impene­
tratibility parameter A is increased from zero (i.e., the value 
for fully penetrable spheres) at fixed 'TJ, the mean cluster size 
first increases with increasing A (until a value A ::::;0.5) and 
then decreases slowly until it again crosses the point for 
A = O. This nonmonotonic dependence on A is explained as 
follows. For fixed but finite 7', stickiness has no effect on 
cluster formation when the particles are fully penetrable 
(A = 0) for reasons mentioned earlier. As A increases slight­
ly from zero, therefore, the effect of stickiness will serve to 
increase S because of the finite surface area available (on the 
inner hard core) for adhesion. As A increases further, Swill 
increase (since the surface area of the inner hard core in­
creases) until the effects of impenetrability of the inner hard 

4~--------------~ 
1'= 00 

3 

S(11) 2 

0~----~------'------'------1 
0.00 0.05 0.10 

11 
0.15 0.20 

FIG. 8. Mean cluster size S(7J) for nonsticky spheres as a function ofre­
duced density 71 for five different values of the impenetrability parameter: 
4 = 0.0, 0.25, 0.50, 0.75, and 1.0. 
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FIG. 9. As in Fig. 8 for sticky spheres with r = 1/3. 

core predominate over surface adhesion effects. At this 
point, increasing A., decreases S until the impenetrable­
sphere limit (A. = 1) is reached. 

As described in the Introduction, the advantage of 
studying cluster formation using a virial analysis is that it 
enables one to obtain a complete description of the micro­
structure of dilute systems. For example, using the results 
given above we can study the compactness of particle clus­
ters. to Specifically, we consider, as a measure of the com­
pactness of trimers, the ratio of the concentration of cyclic 
trimers to the concentration of linear trimers in the zero­
density limit, i.e., the ratio of the third term to the sum of the 
firsttwotermsinEq. (2.9). In Fig. 10weshowthisratioasa 
function of the impenetrability parameter A. for given values 
of r. For reasons given earlier, all the curves of Fig. 10 have 
the same value for A = O. For nonsticky spheres, the number 
of cyclic trimers decreases monotonically and smoothly with 
increasing A.. For sticky spheres (finite r), this measure of 
compactness has a nonmonotonic dependence on A, i.e., be­
cause of the competition between repulsive and attractive 
forces, it first increases with increasing A (from its fully pen­
etrable limit) until it reaches some maximum value and then 
decreases upon increasing A. further. Note that for finite r, 
the ratio of cyclic trimers to linear trimers has a discontin­
uous first derivative at A. = 112. This cusp arises in cluster 
diagrams which contain at least one delta-function bond and 
can be explained geometrically using arguments similar to 
ones used by Torquat020 to explain such behavior in related 
integrals. 

It must be kept in mind that the results described thus 
far apply only to low-density situations. For arbitrary densi­
ties, the effects of A. and r on cluster formation are expected 
to be even more complex. 

0.6.,.---------------_ 

0.5 

0.4 

0.3 

0.2 

0.1 

O.O+--..,---..,---..,...--..,...-~ 
0.0 0.2 0.4 0.6 

A 
0.8 1.0 

FIG. 10. Ratio of the concentration of cyclic trimers to the concentration of 
linear trimers in the zero-density limit as a function of the impenetrability 
parameter A for given values of the inverse stickiness: T = 00, 1, 112, and 11 
4. 

B. [1,1] Pade approximant for the mean cluster size 

In order to estimate the behavior of the mean cluster size 
at arbitrary density, we consider obtaining the [1,1] Pade 
approximate of the density expansion of S for our model. 
Although a [1,1] Pade approximant cannot be expected to 
be quantitatively accurate, we shall show that it does capture 
the essential qualitative features of S, even in the vicinity of 
percolation transition. 

Now, the [1,1] Pade approximant of the mean cluster 
size is given by 

S( 17> = a - b1] , 
c-d1] 

where 

and 

U2 
a = c = 8(1-A. 3

) +--, 
r 

b = -30+ 12M3-7U 4 -2M 6 +..!... 
r 

d = 34 -7U 4 + 38A. 6 + ..!...(24A. 3 _ 19A. 5) 
r 

(4.12) 

(4.13) 

( 4.15) 

At the percolation threshold ( 1] p ), S( 1]) diverges and hence 
we obtain 

1]p = 34 -7U 4 + 3M 6 + (lIr)(24A. 3 _ 19A. 5) + (A. 4jr2) + !(A. 3jr3) 
( 4.16) 
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0.24-
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FIG. 11. Percolation threshold 7Jp [as obtained from [1,1 J Pade approxi­
mant of mean cluster size (4.12)] as a function of impenetrability param­
eter i/. for nonsticky spheres (T = 00) and two other strengths of interac­
tion, T = 1.0 and 0.25. These graphs clearly depict (qualitatively) that an 
attractive interaction need not always reduce the percolation threshold. 

In Fig. 11, we plot the locus of the percolation line on the 
17 p -A plane for T = 0.2S, 1, and 00. First consider the case of 
nonsticky spheres ( r = (0). Note that 17 p does not monoton­
ically increase with increasing A. There are two competing 
effects operating here: (0 as A increases (i.e., as the thick­
ness of the penetrable concentric shell becomes smaller), the 
probability of two particles overlapping decreases, thus, the 
coordination number decreases and the percolation thresh­
old increases, and (ii) as A increases, for a given cluster size, 
the presence of the inner hard core results in clusters that 
occupy a larger volume of space and hence the percolation 
threshold decreases. For small A, effect (ii) predominates 
over effect (i), but not by much, and as a result 17 p decreases 
weakly with A for a wide range of A until it reaches a mini­
mum value Amin s;;0.42. For A>Amin' effect (i) predomi­
nates and 17p increases with increasing A. These effects are 
consistent with those observed by DiSimone et al.9 using the 
Percus-Y evick approximation for the PCS model. Interest­
ingly, our rather crude results agree qualitatively well with 
the Monte Carlo (MC) simulations of Bug et aC Compari­
son to the Percus-Yevick (PY) approximation for the PCS 
model9 reveals that although the PY solution predicts a non­
monotonic dependence on A, it predicts a much steeper des­
cent in 17 p vs A for small A than either our or the M C results. 
The value of Amin s;;0.7 obtained in the PY approximation 
matches the MC result of about 0.76 rather closely though, 
whereas our result underestimates the MC result by about 
4S%. A look at Table I shows that the PY approximation 
consistently overestimates the MC percolation-threshold 
value21

; this is to be contrasted with the fact that our results 
always underestimate the MC results for 17p- Nonetheless, 
Eq. (4.16), derived from a [1,1] Pade approximant of S, 
provides a better estimate of 17 p than does the PY approxi­
mation for O';;;A < 0.3 and for A very near unity; for A between 

TABLE I. Comparison of percolation thresholds for nonsticky spheres for 
several values of the impenetrability parameter i/. as obtained from [1,1] 
Pade in the present work, Monte Carlo (MC) calculations (Ref. 7) and 
Percus-Yevick (PY) approximation (Refs. 6 and 9). 

Reduced density at percolation 
Impenetrability 7Jp 

parameter 
i/. Eq. (4.16) MC PY 

0.0 0.24 0.35 0.50 
0.54 0.23 0.34 0.41 
0.90 0.31 0.40 0.44 
1.0 0.40 0.64 00 

0.3 and very near one, the PY prediction is more accurate. It 
is expected that a higher-order Pade approximant, such as 
[2,2] approximant, would give a good estimate of 17p over 
the entire range of A; however, higher-order cluster integrals 
become increasingly complex, and hence more difficult to 
evaluate, as the order increases. 

For finite r, Fig 11 shows that increasing attractive 
forces does not necessarily lower the percolation threshold. 
For A < 0.3, increasing the stickiness r- 1 actually increases 
the percolation threshold because clusters, for such small A, 
become more compact. This effect is similar to effect (ii) 
described above for the pure PCS model. For A> O.S, in­
creasing the adhesiveness decreases the threshold since the 
probability of two particles overlapping increases and hence 
such behavior is related to effect (i) for the pure PCS model. 
The results shown in Fig. 11 for finite r agree qualitatively 
well with the trends seen by Bug et al. for a different but 
related model. 
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APPENDIX: EVALUATION OF THREE-BODY CLUSTER 
INTEGRALS 

We describe a general prescription to exactly compute 
three-body cluster diagrams. (We do not describe evaluation 
of two-body diagrams, since they are easily obtained). A 
typical third-order graph has the form 

(Al) 

where the/; could be any of the functionsj*(r),ft(r), or 
8 (r - AU) described in the text. When neither h nor h con­
tains a delta function, the second integral in Eq. (AI) is 
given by the intersection volume v~nt (rl2; R 1,R2 ) of two 
spheres of radii RI and R2• This quantity is given by Tor­
quato. 19 In our case, Rl and R2 may both be uand/or Au. If 
delta functions appear in/z and};, we may use the following 
results: 
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(A2) 

and 

O,r,(R I +Rz) 

r> (R 1 + R2 ) 

(A3) 

In Eq. (A2), H(x) is the Heavisideunitfunction: H(x) = 0 
if x<O and H(x) = 1 if x>O. Once we use Eq. (A2) or 
(A3) in Eq. (A 1), the rest becomes a one-dimensional inte­
gral and is quite straightforward to calculate. 
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