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Detailed characterization of rattlers in exactly isostatic, strictly jammed sphere packings

Steven Atkinson
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA

Frank H. Stillinger
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA

Salvatore Torquato
Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied

and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
(Received 13 November 2013; published 23 December 2013)

We generate jammed disordered packings of 100 � N � 2000 monodisperse hard spheres in three dimensions
whose strictly jammed backbones are demonstrated to be exactly isostatic with unprecedented numerical accuracy.
This is accomplished by using the Torquato-Jiao (TJ) packing algorithm as a means of studying the maximally
random jammed (MRJ) state. The rattler fraction of these packings converges towards 0.015 in the infinite-system
limit, which is markedly lower than previous estimates for the MRJ state using the Lubachevsky-Stillinger
protocol. This is because the packings that the TJ algorithm creates are closer to the true MRJ state, as shown
using bond-orientational and translational order metrics. The rattler pair correlation statistics exhibit strongly
correlated behavior contrary to the conventional understanding that they be randomly (Poisson) distributed.
Dynamically interacting “polyrattlers” may be found imprisoned in shared cages as well as interacting through
“bottlenecks” in the backbone and these clusters are mainly responsible for the sharp increase in the rattler
pair correlation function near contact. We discover the surprising existence of polyrattlers with cluster sizes
of up to five rattlers (which is expected to increase with system size) and present a distribution of polyrattler
occurrence as a function of cluster size and system size. We also enumerate all of the rattler interaction topologies
we observe and present images of several examples, showing that MRJ packings of monodisperse spheres
can contain large rattler cages while still obeying the strict jamming criterion. The backbone spheres that
encage the rattlers are significantly hypostatic, implying that correspondingly hyperstatic regions must exist
elsewhere in these isostatic packings. We also observe that rattlers in hard-sphere packings share an apparent
connection with the low-temperature two-level system anomalies that appear in real amorphous insulators and
semiconductors.
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I. INTRODUCTION

A packing in d-dimensional Euclidean space Rd is defined
as a collection of particles that do not overlap with one
another. The packing density φ is the fraction of Rd covered
by the particles. In three dimensions, considerable attention
has been given to characterizing packings of monodisperse
hard spheres since they serve as simple yet powerful models
of many-particle systems such as liquids, glasses, colloids,
particulate composites, and biological systems, to name a
few [1–5]. In particular, considerable effort has been put into
studying the subset of hard-sphere packings that are jammed
(roughly speaking, packings that are mechanically stable). It
is known that jammed packings of hard spheres can take on a
wide range of densities as high as φ = π/

√
18 = 0.740 48 . . .

for the fcc crystal and as low as φ = π
√

2/9 = 0.493 65 . . .

for the tunneled crystal [6]. In addition to this considerable
range in density, jammed sphere packings may also exhibit
a wide continuum of order to disorder from perfect crystals
to packings that exhibit no crystalline order whatsoever.
Torquato et al. have proposed order maps, one of which is
shown in Fig. 1, in which all sphere packing configurations
can be characterized according to their density, some order
metric ψ (subject typically to the normalization 0 � ψ � 1),
and whether or not they are jammed [7–10]. Importantly,

the frequency of occurrence of a particular configuration is
irrelevant insofar as the order map is concerned. In other words,
the order map emphasizes a geometric-structure approach to
packing by characterizing single configurations, regardless
of how they were generated (e.g., whether through some
physical dynamical process or otherwise) or their occurrence
probability [9].

Among all jammed sphere packings, the maximally random
jammed (MRJ) state is the one that minimizes ψ among
all statistically homogeneous and isotropic jammed pack-
ings [7,9,11]. The MRJ state is a well-defined minimum in an
order map in that for a particular choice of jamming category
and order metric it can be identified unambiguously, making
mathematically precise the familiar notion of random close
packing. In order to study the MRJ state, it is necessary to
provide a precise definition of jamming. To this end, Torquato
and Stillinger have defined the following rigorous hierarchical
jamming categories [11]: a locally jammed packing is one
in which no particle may be moved while holding all other
particles fixed. A collectively jammed packing is any locally
jammed configuration in which no subset of particles can be
collectively displaced with a globally nondeformable bound-
ary. A strictly jammed packing is any collectively jammed
configuration that disallows all globally uniform volume-
nonincreasing deformations of the system boundary. Note that

1539-3755/2013/88(6)/062208(12) 062208-1 ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.062208


ATKINSON, STILLINGER, AND TORQUATO PHYSICAL REVIEW E 88, 062208 (2013)

47.00 0.640.49φ
0

1
ψ

A’

Jammed
Packings

B’
B

MRJ

A

FIG. 1. (Color online) Schematic order map in the density-order
(φ-ψ) plane for three-dimensional strictly jammed, monodisperse
hard-sphere packings in the infinite-system limit, adapted from [9].
White and blue regions contain the attainable packings, the blue
region represents the jammed subset of packings, and the dark
shaded region contains no packings. The locus of points A-A′

corresponds to the lowest-density jammed packings (conjectured to
be tunneled crystals [6] with φ = √

2π/9). The locus of points B-B ′

corresponds to the densest jammed packings (stacking variants of the
fcc lattice). Packings along the curves joining these pairs of points
can be generated by randomly inserting spheres into the vacancies
of the tunneled crystal until the corresponding fcc variant is obtained.
The point MRJ represents the maximally random jammed state, i.e.,
the most disordered state subject to the jamming constraint. The
vertical line starting at the MRJ point contains the set of packings that
are at the MRJ density but have different values of ψ , highlighting that
packings at the MRJ density are generally not maximally disordered.

these categories, which depend on the boundary conditions,
imply that collectively jammed packings are stable to uniform
compression, and strictly jammed packings are additionally
stable against shear deformations. Rigorous methods have
been devised to test whether a packing is collectively or strictly
jammed [12]. In this work we will restrict our considerations
to strictly jammed packings. Note that it is not uncommon to
find that some subset of spheres is jammed (the backbone)
while the remainder are not jammed but are locally imprisoned
by their neighbors (the rattlers). If there is no jammed
backbone, then the packing is unjammed.

The literature on disordered sphere packings is in agreement
with regard to several key properties of the MRJ state for three-
dimensional monodisperse hard spheres in the infinite-system
limit. For example, a variety of sensible, positively correlated
order metrics produce an MRJ state with φ ≈ 0.64 [8–10].
Moreover, there is very strong evidence that it has an isostatic
backbone [13–16], implying that it has the minimum number
of contacts required by the strict jamming constraint [9,17].
While previous efforts have successfully produced disordered
jammed packings that possess no crystalline order [17–19], it
has been a challenge for previous protocols to produce hard-
sphere packings [20] that are both guaranteed to be strictly
jammed and exactly isostatic—a difficulty that we address in
this present work.

The difficulty in creating isostatic packings of either hard or
soft spheres stems from two factors. The first is the choice of
preparation protocol. It is reasonable to expect that different
methods will sample different ensembles of jammed states.

One example of this is that the Lubachevsky-Stillinger (LS)
hard-sphere molecular dynamics algorithm can be tuned to
sample jammed states with a variety of densities between
0.64 and 0.74 by varying the rate at which the spheres
grow in size. Note as well that density does not uniquely
characterize an ensemble of jammed packings and it follows
that a density of φ ≈ 0.64 is not sufficient to identify a
disordered packing as MRJ, as the order map in Fig. 1 makes
clear: a collection of packings exists along the vertical line
starting at the MRJ point; for example, a partially diluted fcc
crystal exists on this line at some (presumably high) value of
ψ [8,10]. As we will demonstrate, other more subtle yet macro-
scopic differences can exist between jammed, disordered
packings that are all at the MRJ density, calling into question
whether the traditional methods have been producing the true
MRJ state.

The second difficulty in making an isostatic packing stems
from a deficiency in numerical precision in obtaining a truly
jammed state within the practical constraint of computational
time. At this time, this is not due to insufficient machine
precision (e.g., using quadruple-precision arithmetic instead
of double precision). All of the current (simulation) protocols
used in creating disordered, jammed sphere packings rely
on some sort of iterative refinement that asymptotically
approaches the final jammed state, so some judgment must be
made as to when the algorithm has converged sufficiently; in
theory, an infinite number of iterations is required to reach the
exact jammed state. Because a diagnosis of isostaticity relies
on one’s ability to reliably identify interparticle contacts, it
is crucial that a protocol be capable of producing a packing
of high numerical fidelity (i.e., converging in an efficient
manner) such that interparticle contacts are clearly identifiable.
Distinguishing between true contacts and near contacts is
nontrivial since a disordered sphere packing will typically
contain pairs of nearly contacting spheres with very small
interparticle gaps [17]; we will elaborate on this point later on.

One symptom of this challenge is manifested in the
identification of rattlers. Since rattlers were first identified
in disordered hard-sphere packings, different authors have
offered a variety of estimates of the overall rattler frac-
tion [9,17,21–23]. The considerable variability that exists
among many of the reported rattler fractions can be attributed
to these aforementioned difficulties (preparation protocol and
simulational truncation). Clearly, a reliable characterization
of the rattler population requires that the ideal jammed
state be created as precisely as possible. Moreover, a more
detailed characterization of the rattler population has not been
carried out, leaving many assumptions about the spatial and
topological characteristics of rattlers and their surroundings
untested; we address several of these in this paper.

In spite of these mathematical imprecisions, the preponder-
ance of (both simulational and experimental) evidence strongly
suggests that rattlers are an intrinsic aspect of MRJ packings of
monodisperse hard spheres in three dimensions. In any strictly
jammed packing, rattlers owe their existence to local geometric
frustration that interrupts attainment of the maximum packing
efficiency illustrated by fcc and hcp crystals. The mean-field
theory of Edwards has been used to predict some of the
macroscopic properties of jammed particle packings [24,25].
However, it fails to predict the existence of rattlers altogether,
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further emphasizing the fact that the rattler population has been
an understudied facet of the MRJ state and underscoring the
need for a more detailed theory of jamming. Furthermore, the
behavior of rattlers in hard-sphere packings has unexplored
applications with regard to local interaction “weak spots” in
real amorphous insulator solids [26], which we elaborate upon
in the closing section of the paper.

The Torquato-Jiao (TJ) sphere-packing algorithm is well
suited to study the MRJ state—especially when one is not
concerned with any dynamics or history in getting to that end
state—because it is capable of producing inherent structures
(mechanically stable local density maxima) possessing back-
bones that are guaranteed to be strictly jammed and are often
highly disordered [15]. To accomplish this, the algorithm poses
the packing problem as an optimization problem: to maximize
φ (locally or globally [15,27]) subject to linearized nonoverlap
constraints between spheres in a deformable periodic box.
The algorithm solves a sequence of linear programs (LPs)
using particle translations and the symmetric strain tensor
of the deformable periodic box as design variables. As a
consequence, when no incremental solution to the LP exists,
the system admits no further collective motions coupled
with box deformations: the packing is, by definition, strictly
jammed. In addition, the linear program’s solution directly
encodes a contact network within which rattlers can be clearly
identified and packing backbones are exactly isostatic with
high probability.

Since its introduction [15], the TJ algorithm has been
used to identify the densest known packings of binary sphere
systems for a variety of size and number ratios [27] and to
generate exactly isostatic, strictly jammed MRJ packings of
bidisperse spheres [28]. Nonetheless, the algorithm is still in
its infancy and its consequences are still far from being fully
understood.

In this work we show that the TJ algorithm can be
used to generate disordered packings of N spheres within a
deformable periodic simulation box with unsurpassed numer-
ical fidelity. This ability, combined with the TJ algorithm’s
natural ability to generate inherent structures, simultaneously
addresses both of the aforementioned difficulties and allows
one to have a clear view of the MRJ state. In particular, we
quantify the numerical tolerance to which our packings are
prepared and demonstrate a difference of several orders of
magnitude between the most distant true contact and the closest
near contact. In studying the consequences of this remarkable
numerical tolerance, we present rattler fraction probability
distributions for our packings of 100 � N � 2000 spheres
as a function of system size and extrapolate an infinite-system
rattler fraction that is substantially lower than previous esti-
mates. This appears to be a consequence of the accuracy with
which the TJ algorithm is producing the MRJ state in the sense
that, in the large-N limit, it is converging toward a generic
isostatic state [29] without any added correlations beyond
those required by the strict jamming constraint. We support this
conclusion using the standard bond-orientational order metric
and a g2-based translational order metric in Appendix B.

Motivated by this observation, we proceed to consider
the rattler population in detail, showing significant spatial
correlations through the rattler-rattler pair-correlation function
contrary to conventional wisdom that assumes that they be

randomly distributed. In particular, we identify clusters of rat-
tlers sharing common cages or otherwise interacting through
pair collisions, which we call polyrattlers, simultaneously
identifying a “bottleneck” geometry in the backbone that
allows pairs of rattlers to undergo pair collisions despite
being imprisoned in distinct cages. Using this information, we
decompose the rattler pair-correlation function’s contributions
from interacting and noninteracting rattlers and find that
the former are almost exclusively responsible for the sharp
increase in the pair-correlation function as contact is ap-
proached. Clusters of up to five rattlers are contained within our
packings of N � 2000 spheres, showing that MRJ packings
of monodisperse spheres can contain large rattler cages while
still obeying the strict jamming criterion; larger polyrattlers
are expected to be found in larger systems, as we discuss
later in Sec. III E. We have included graphs that describe all
of the polyrattler topologies that we have observed as well as
images of several polyrattler configurations that show a variety
of notable features. Finally, we observe that the backbone
spheres that form rattler cages are significantly hypostatic as
a whole (i.e., possessing fewer than six contacts per sphere),
implying that there must be other regions within the packing
that are hyperstatic (possessing more contacts than the isostatic
number). Importantly, since the rattler fraction is lower in
our packings compared to other protocols [15,17,30,31],
the occurrence of such hyperstatic regions should also be
suppressed. Conversely, by controlling the occurrence of
spheres with high coordination numbers, one might be able
to tune the rattler fraction of a sphere packing.

The rest of this paper is organized as follows. In Sec. II
we provide an overview of the TJ algorithm and supply the
relevant simulational parameters we used in this study. In
Sec. III we present the results that we have mentioned in the
previous paragraph. In Sec. IV we offer conclusions, discuss
the significance of our results, and propose ways in which our
work might be extended. Furthermore, Supplemental Material
provides animations of the images of rattler clusters in order
to provide additional insight about their structure [32].

II. METHOD

We use the TJ algorithm to generate strictly jammed MRJ
packings of monodisperse spheres with periodic boundary
conditions for system sizes N = 100, 200, 500, 1000, and
2000 spheres per packing; the details regarding the imple-
mentation of this algorithm can be found in [15], but we
provide a brief sketch of the algorithm here for the sake of
completeness.

The TJ algorithm accepts as input any hard-sphere packing;
we consider here packings generated via random sequential ad-
dition (RSA) within a fundamental cell with periodic boundary
conditions. The densification process is an iterative procedure
driven by solving linear programs (LPs). Since the goal of the
protocol is to maximize φ (or, in the spirit of the energy land-
scape picture [15], minimize −φ), we may pose an objective
function in terms of a strain tensor acting on the fundamental
cell. A linearization gives the following objective function for
the LP:

min Tr(ε) = ε11 + ε22 + ε33 + · · · + εdd, (1)
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where ε is a strain tensor that deforms the fundamental
cell described by a generating matrix �. This implies that
the components of the strain tensor ε are design variables
in the LP; the other design variables are the displace-
ments for each sphere (in the lattice coordinate system)
�xλ

1,�xλ
2,�xλ

3, . . . ,�xλ
N , where the superscript λ denotes

that the vectors are expressed in terms of �. Since no
two spheres can overlap in a hard-sphere packing, our LP’s
constraints must reflect that rG

ij , the (global) distance between
the centroids of spheres i and j , with diameters Di and Dj ,
respectively, be r

g

ij � (Di + Dj )/2. Expressing this in terms
of the spheres’ lattice coordinates and taking into account
the spheres’ displacements and deformable fundamental cell,

we have
√

rλ
ij · � · (1 + ε)2 · � · rλ

ij � (Di + Dj )/2, where

the relative displacement rλ
ij = (xλ

j + �xλ
j ) − (xλ

i + �xλ
i ).

Linearizing this gives

� · rλ
ji · ε · � · rλ

ji + �xλ
i · G · rλ

ji + �xλ
j · G · rλ

ij

� 1
2

[
(Di + Dj )/2 − rλ

ji · G · rλ
ji

] + R, (2)

where G = �T · � is the Gram matrix of the lattice � and
R contains all of the higher-order terms; in practice, it is
acceptable to let R = 0. This constraint must be posed for all
pairs of spheres that are close to each other and therefore at
risk of overlapping. To do this, an “influence sphere” of radius
γ is defined such that a constraint will be included in the LP
for any pair of spheres whose centroids are separated by less
than (Di + Dj )/2 + γ . Since Eq. (2) is a local linearization
of a quadratic constraint, we impose an artificial limit on the
extent of the design variables in each iteration to preserve the
accuracy of the linearization.

Having defined an objective function and constraints, we
solve the LP to determine how the packing will be rearranged
and densified. After applying the sphere displacements and lat-
tice deformation, the LP is reformulated using the new sphere
positions and fundamental cell tensor. The process is iterated
until the solution converges and the packing does not change by
more than some termination threshold. We have found that the
most effective threshold is the fundamental cell volume; when
the cell volume fails to decrease by an appreciable amount, the
packing is jammed to a corresponding precision.

We use initial conditions generated by RSA at an initial
density φinit = 0.1 in a fundamental cell with unit volume;
we have found that, for densities significantly under the RSA
saturation density, the resulting packings are largely insensitive
to φinit. Packings are compressed using the TJ algorithm with
an influence sphere of radius γ = D/40 [15], where D is
the sphere diameter. For sufficiently large system sizes (e.g.,
N � 100), the size of the influence sphere does not affect the
final state of the packings to any detectable extent. For a single
LP iteration, box deformations (both normal and shear move-
ments) are limited in magnitude to less than D/200 and sphere
translations are limited to ||�r i || � D/200. The algorithm is
terminated when two successive compressions decrease the
lattice volume by Vk−2 − Vk < 3.0 × 10−12, where Vk is the
volume of the fundamental cell on iteration k. We chose to
limit ourselves to N � 2000 so that we can generate 1000
packings per system size for accurate statistics [33].

III. RESULTS

We use the protocol described in the previous section
to generate 1000 packings of system sizes N = 100, 200,
500, 1000, and 2000, yielding 5000 packings in total. The
following detailed sections characterize various aspects of the
packings.

A. Isostaticity

Before presenting packing statistics, we first establish
that the N -particle packings are indeed strictly jammed and
isostatic using the exact relations given in [12]. For frictionless
spheres, there are d(NB − 1) degrees of freedom associated
with translating the spheres (up to uniform translations of the
whole packing under periodic boundary conditions), where NB

is the number of (jammed) backbone spheres. The simulation
box is allowed to deform for strict jamming and thus there
are d(d + 1)/2 additional degrees of freedom associated with
straining the unit cell, totaling Fs = d(NB − 1) + d(d + 1)/2
degrees of freedom that must be constrained. Since the
nonoverlap constraints are inequality constraints, Fs + 1
of them are required. Since the system volume cannot
increase, the first constraint is Tr(ε) � 0. Therefore, the
number of other constraints—contact pairs—is equal to the
number of degrees of freedom; for d = 3, this corresponds to
3NB + 3 contact pairs [17], or an average contact number of
z = 6 + 6/NB [34,35]. Our packings prepared using the TJ
algorithm have precisely this many contact pairs.

B. High-fidelity strictly jammed packings

First, we quantify the precision to which our packings are
made by considering the contact tolerance δ (the numerical
separation distance of particles that are actually touching).
When δ = 0, no spheres are in contact and the packing is
unjammed. Increasing δ introduces interparticle contacts and
the packing becomes jammed at some minimum tolerance δmin.
A feature of the TJ algorithm is that the feasible tolerance
with which the linear programs are solved is intimately related
to δmin. The packing first becomes strictly jammed (i.e., δmin

is found) when the isostatic number of contacts are formed.
The contact tolerance at which the first excess contact is
introduced is δmax and corresponds to the point at which a
near contact is mislabeled as a true contact. It is therefore
imperative that the numerical fidelity of the packing allow for
a significant difference between δmin and δmax. If not, then there
is a risk of confusing near contacts with true contacts, thereby
finding the wrong contact network and mislabeling rattlers
and backbone spheres. For our 1000 packings generated with
N = 2000, δmax − δmin is between 2 and 7 decades, with a
median of over 4 decades; the mean for δmin is 10−11D, with
most instances falling within one order of magnitude, and
δmax is typically, at most, 10−6D. In general, the quantity
δmax decreases as N increases since near contacts may be
found at arbitrarily small separations in the infinite-system
limit [17]. In addition to the high numerical fidelity that the TJ
algorithm allows us to attain, the linear programming method
possess a unique safeguard in that, by investigating the active
and nonactive constraints [38] in the final LP solution, one
may directly identify interparticle contacts and so check the
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result obtained by choosing a contact tolerance. Therefore, the
packings generated with the TJ algorithm are guaranteed to
have accurate backbone information. Further details are given
about our packings’ numerical fidelity in Appendix A.

C. Rattler fraction distribution function

Having created packings with robust isostatic contact net-
works, we now consider the behavior of the rattler fraction as a
function of system size. To do this we compute the probability
density function P (NR/N ) of the rattler fraction NR/N for
each system size; the result is plotted in Fig. 2. These distri-
butions are very closely fit by appropriately scaled binomial
distributions. For system sizes N < 500, we have observed
packings that do not have any rattlers in them, though this
probability decreases with increasing system size owing to the
narrowing of the distribution (the standard deviation of the dis-
tribution scales as N−1/2); the probability that a packing with
N = 500 has no rattlers is estimated to be about one in 2000.

Our results show a mean rattler fraction that asymptot-
ically approaches a sharply defined infinite-system limit of
limN→∞ NR/N = 0.015. This value is significantly lower
than the estimated 0.025–0.030 characteristic of the LS
algorithm [15,17,30,31]. Because the packings created by the
TJ algorithm are exactly isostatic inherent structures by design
(unlike those generated by the LS algorithm), we conclude that
the TJ algorithm is generating packings closer to the true MRJ
state than ever before in the sense described in the Introduction.
We have confirmed this claim by computing bond-orientational
and translational order metrics on the configurations generated
by the TJ algorithm and comparing them against corresponding
values computed for a representative set of packings generated
using the LS algorithm; see Appendix B for details. This
implies that the MRJ state has a substantially smaller rattler
fraction than what was previously thought. The packing den-
sity approaches an infinite-system limit of limN→∞ φ(N ) =
0.639, with fluctuations decaying as N−1/2, in agreement with
past results for monodisperse hard-sphere systems [16].
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FIG. 2. (Color online) Probability density functions for the rattler
fraction NR/N plotted for various N . The inset shows the mean rattler
fraction as a function of N with vertical bars denoting fluctuations
of two standard deviations (error bars are too small to be seen). Note
that NR/N asymptotically approaches limN→∞ NR/N = 0.015 with
fluctuations narrowing proportionally to N−1/2.
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FIG. 3. (Color online) Rattler-rattler and backbone-backbone
pair-correlation functions as a function of dimensionless separation
r/D − 1 averaged over 1000 packings for N = 2000. The rattlers’
spatial distribution shows strongly correlated behavior including the
existence of n-rattlers (n � 2), as evidenced by the very steep increase
near contact. The quantity gR

2 rises dramatically as the contact value is
approached [41]; the leftmost point (not shown) is gR

2 (1/40) = 14.79.

D. Rattler pair-correlation function

Next we extract higher-order statistical spatial information
about the rattlers and backbone through computing the pair-
correlation function for rattler-rattler and backbone-backbone
sphere pairs in our packings, denoted, respectively, by gR

2 (r)
and gB

2 (r). Figure 3 shows the pair-correlation functions for
N = 2000 averaged over 1000 configurations.

Both the backbone and rattlers exhibit similar oscillatory
behavior, but gR

2 behaves more smoothly, lacking the sharpness
in the peaks at r/D = √

3 and 2 that are found in the backbone
pair-correlation function, which usually correspond to the
presence of coplanar double triangles of particles and three
collinear particles, respectively [17,39]. The rattlers’ marked
spatial pair correlations dispel the traditional notion that they
are randomly distributed in a packing [40]. Rather, our work
suggests that the correlations between rattlers owe directly to
the strong influence of the surrounding backbone.

In addition, it is significant that the oscillations in gR
2

are delayed in phase compared to those found in gB
2 . Two

rattlers separated by a similar geometric configuration as found
in the backbone would have this extra distance due to the
extra space available within the cages. Importantly, gR

2 rises
dramatically near contact and conceivably could be consistent
with a divergence [41]. As a result of imposing a better contact
tolerance, the near-contact distribution of gB

2 is proportional
to (r/D − 1)−0.38, in agreement with a previous result [17];
including the rattlers does not change the exponent to the
number of significant figures reported here. Note that this
exponent of −0.38 is somewhat above the −1/2 reported
elsewhere [39,42,43].

E. Polyrattlers

The sharp increase in gR
2 near contact implies the existence

of “polyrattlers”—rattler clusters that are either imprisoned
within the same cage or otherwise interact through pair
collisions. Motivated by this finding, we proceed to identify
and characterize the polyrattlers in our jammed packings inside
which rattlers may interact directly through pair collisions.
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(a) (b)

FIG. 4. (Color online) (a) A 2-rattler where both rattlers (opaque
red spheres) are in the same cage (translucent blue spheres). (b) A
2-rattler with a bottleneck. The cage spheres (translucent) are colored
either bright red or dark blue to match the rattler (opaque spheres) that
they enclose. The two bottleneck spheres (translucent green spheres
marked with opaque dots in their centers) contribute simultaneously
to the cage of both rattlers [44].

The single-particle available space ai of (rattler) sphere i is
defined as the locus of all positions covered by the rattler
sphere under continuous displacements while obeying the
nonoverlap constraints with the backbone spheres. Note that
all other rattlers are disregarded when determining a rattler’s
single-particle available space.

The only way for a polyrattler to exist in two dimensions
is for the rattlers to be in the same cage (and therefore
have identical ai’s). However, in three dimensions, a distinct
geometry is possible in which rattlers may pair collide, but
occupy different cages. In this case, rattlers are separated
into different yet partially overlapping cages by the presence
of bottlenecks in the jammed backbone. Two examples of
2-rattlers (polyrattlers of cluster size 2), one within a single
common cage and one with a bottleneck, are shown in
Figs. 4(a) and 4(b), respectively. The bottleneck geometry is
very significant when considering the nature of rattler clusters
in three dimensions: the 2-rattlers are almost 20 times more
likely to be separated by a bottleneck than be in the same
cage. Moreover, 2-rattlers separated by a bottleneck have a
mean separation distance of 1.1 × 10−2D, whereas those in
the same cage have a mean separation of 2.4 × 10−3D.

By classifying all pairs of rattlers as either (i) not inter-
acting, (ii) interacting through a bottleneck, or (iii) in the
same cage, we can decompose the pair-correlation function gR

2 .
Doing this, we find that the largest contribution to the sharp
increase near contact indeed comes from polyrattlers. This
decomposition also shows that the polyrattler contribution to
gR

2 becomes small quickly beyond contact (see Fig. 5).
Cages do not typically allow much space for rattlers

to move. For monorattlers, the mean distance between the
rattler and a cage sphere is about 0.01D, and the probability
that a cage sphere is some distance from the rattler decays
rapidly with increasing distance from contact. In addition, our
packings are saturated (no void exists that is large enough to
allow for the insertion of an additional sphere), reinforcing
previous investigations using the LS algorithm [45].

Having established the existence of polyrattlers, we identify
and enumerate all of the polyrattlers that we observe in
our packings up to a system size of N = 2000. Figure 6
shows the rattler fraction contributions according to the
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FIG. 5. (Color online) Rattler-rattler pair-correlation function
averaged over 1000 packings for N = 2000, separated according to
the three different types of interactions: noninteracting pairs (black
curve), pairs interacting through a bottleneck (green squares), and
pairs sharing a common cage (red solid circles). This decomposition
shows that the near-contact regime is dominated by interacting
pairs and that pairs interacting through bottlenecks can be found at
comparatively large separations. Note that the ordinate in this figure
is expressed on a logarithmic scale, unlike Fig. 3.

cluster size n of the polyrattler. The contributions decay
approximately exponentially in cluster size and do not depend
strongly on system size. The insets in Fig. 6 show the
topologies of the polyrattlers that we find: nodes correspond
to rattlers and interacting pairs (i.e., with overlapping ai’s)
are connected by edges. The discovery of polyrattlers with
cluster size up to 5 is significant because it shows, surpris-
ingly, that three-dimensional MRJ monodisperse packings
can contain large rattler cages while still obeying strict
jamming [46]. Figure 7 shows one such 5-rattler that we
identified; it is composed of three rattlers in a common cage
plus two additional rattlers separated into their own cages by
bottlenecks. How large a polyrattler can be found in an MRJ
packing in the infinite-system limit? If there is an upper limit
on polyrattler size, we believe that it may be substantially
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FIG. 6. (Color online) Rattler fraction contributions according to
polyrattler cluster size n and system size N . Diagrams show examples
of n-rattler topologies. Nodes represent rattlers and edges connect
rattlers with overlapping ai’s. Chainlike 3-rattlers occur about twice
as frequently as the triangular variety; due to the large diversity and
rare appearance of 4- and 5-rattlers, we do not comment here on their
frequency of occurrence.
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FIG. 7. (Color online) A 5-rattler with three rattlers occupying
the same cage (solid light pink spheres). The other two rattlers (solid
red spheres) interact with the 3-rattler cage through bottlenecks and do
not interact with each other directly. The cage spheres are translucent.

larger than what we have observed so far via simulations or
has been appreciated in the literature.

F. Rattler cage coordination

The backbone cage spheres surrounding rattlers are typ-
ically significantly hypostatic, with a mean coordination
number of z = 5.76. This suggests that rattlers arise in regions
within the packing where the local coordination structure
becomes so sparse that spheres cease to be sufficiently
supported to be jammed. A contact distribution for the cage
spheres (generated from our N = 2000 packings) is shown in
Fig. 8. The shape of this contact distribution is significantly
different from that of the whole packing, demonstrating
a concrete geometrical feature that is characteristic of the
neighborhood near rattlers.

In order for the backbone to be isostatic as a whole, there
must be other locally hyperstatic regions in the packing in order
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FIG. 8. (Color online) Contact distribution for backbone spheres
that make up rattler cages in our N = 2000 ensemble of packings. The
mean contact number is z = 5.76 and the shape of the distribution
is significantly different from that of the whole backbone (shown
for comparison); the inset quantifies the difference between the two
distributions as a function of z.

to compensate for these hypostatic regions. If one assumes
that locations with increased coordination are undesirable
in an MRJ packing, then by limiting the number of rattlers
in a packing, one may also limit the occurrence of these
locally hyperstatic regions. This reinforces the notion that the
suppressed occurrence of rattlers in packings generated by the
TJ algorithm allows it to come closer to the MRJ state than
before. As a corollary, controlling the occurrence of highly
coordinated spheres may be one method by which one may in
turn control the rattler fraction in a packing.

IV. CONCLUSIONS AND DISCUSSION

The TJ algorithm allows one to accurately identify the
contact network of jammed, disordered sphere packings. We
have used this capability to prepare thousands of strictly
jammed, exactly isostatic packings of monodisperse spheres of
high numerical fidelity. From these packings, we have shown
the probability distribution of rattler fractions as a function of
system size and have extrapolated from our data an infinite-
system limit value of limN→∞ NR/N = 0.015, which differs
significantly from previous estimates using the LS algorithm.
This is because the TJ algorithm comes closer to the true MRJ
state, as shown by standard order metrics (see Appendix B).
Motivated by this finding, we investigated the geometrical
and topological particulars of the rattlers in our MRJ systems.
The rattler population displays significant spatial correlations
similar to the backbone, prompting us to investigate the cages
they inhabit. Rattler clusters are formed through rattlers that
occupy a common cage as well as by rattlers that interact
through a bottleneck configuration that does not occur in two
dimensions; these interacting rattlers constitute the majority
of rattler pairs with a small pair distance, as demonstrated by
a decomposed rattler pair correlation function. In addition, we
found polyrattlers with surprisingly large cluster sizes within
our strictly jammed packings. Finally, the backbone spheres
that encage rattler spheres are often significantly hypostatic,
implying a possible connection between rattlers and areas of
highly coordinated spheres in exactly isostatic monodisperse
hard-sphere packings.

It is interesting that the TJ algorithm generates packings
that have significantly fewer rattlers than the LS algorithm.
The fundamental reason for this difference is the fact that the
TJ and LS algorithms utilize completely different dynamics.
The biggest of these consequences is that packings generated
using the TJ algorithm are guaranteed to be strictly jammed;
the same is not necessarily true for packings generated with the
LS algorithm, even though the pressure may diverge. In fact,
it has been known for a long time that if the expansion rate is
not carefully monitored during the LS algorithm, the pressure
will diverge prematurely and the packing will be hypostatic;
subsequent equilibration reveals the unjammed nature of such
packings. This challenge becomes more prominent as the
system size increases: a smaller final expansion rate must be
used and an unjamming motion takes longer to show up (if it
exists) [17].

We have found that substantial computational time must
be put into the final minute rearrangements in a packing’s
structure to cause jamming; because the LS algorithm searches
these rearrangements using the dynamically indirect heuristic
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of random collisions from molecular dynamics, it becomes
increasingly challenging to generate exactly jammed packings
as the system size becomes large [17]. By contrast, the ability
of the TJ algorithm to use linear programming to directly
search for optimal rearrangements near the jamming limit
makes it ideally suited at the final approach to jamming. In
addition, the TJ algorithm can also quickly identify unjamming
motions in seemingly jammed packings prepared by other
protocols. Therefore, it will be instructive to investigate the
result when packings that are initially prepared through other
protocols are subsequently given to the TJ algorithm for final
densification and jamming.

Moreover, the TJ and LS algorithms tend toward different
configurations due to the dynamics at play. On the one hand,
the TJ algorithm seeks to maximize the density of the packing
within a local neighborhood and is free to choose any collective
displacement of spheres in order to achieve this goal, meaning
that the resulting configurations are always local density
maxima. On the other hand, the molecular dynamics used in the
LS algorithm are constantly equilibrating the packing during
the slow compression, which will cause it to tend to avoid local
density maxima. The result is that packings generated with the
LS algorithm tend towards the global density maximum and
one must take special care to divert it from achieving this
goal when preparing disordered packings. Therefore, while
it is certainly possible to create disordered packings using
the LS algorithm, the TJ algorithm is, by contrast, naturally
suited to generate maximally random packings. While both
protocols may create disordered packings with similar density,
one should clearly expect that the packings be fundamentally
different; the pronounced difference in rattler fraction validates
this expectation.

What does the lower rattler fraction tell us about the jammed
states that the TJ algorithm is accessing? The qualitative
difference between the TJ and LS packings points out an
ambiguity that causes one to call into question whether or
not the standard protocols have been truly producing the MRJ
state, as has been taken for granted. As we have shown
for our packings, the cages around rattlers are noticeably
hypostatic. Because the whole backbone is known to be exactly
isostatic, one should expect that there are other regions in the
packing that are significantly hyperstatic. It is already known
that any departure from isostaticity in a jammed packing
must increase the packing’s order, regardless of whether that
increase in coordination comes with an increase or decrease in
density [7–10]. Therefore, it is not unreasonable to expect
that the suppression of rattlers in packings generated by
the TJ algorithm is closely associated with a suppression of
hyperstatic subregions that would take the packings away from
the MRJ state. In addition, the small amount of available space
in the rattler cages implies that the amount of ordering required
to create a rigid cage is minimized.

It is all the more surprising that the rattlers made by the
TJ algorithm, though more dilute, are still strongly correlated
as opposed to what conventional wisdom dictates. More still,
that one can have clusters of rattlers as large as we have shown
while obeying the strict jamming criterion is remarkable. A
key mechanism for this is the bottleneck geometry that allows
a packing to place cages adjacent to one another. Therefore,
rattler clusters that use the bottleneck geometry avoid the

alternative, substantial challenge: to form a single cage capable
of fitting a large number of rattlers. Therefore, while one
certainly might observe substantially larger polyrattlers than
the 5-rattlers we have found here due to the assistance of
bottlenecks, it is much less clear that MRJ packings will
exhibit similarly large single cages; the largest such cage we
have found here held three rattlers inside. Clearly, we see
that there is rich behavior to be found amidst the rattler-
backbone interactions in disordered, jammed sphere packings,
highlighting the need for a statistical mechanical theory
that is capable of accounting for such behavior. Moreover,
understanding rattler phenomena in confined geometries [47]
represents another fascinating area for future research.

It is conjectured that all strictly jammed, saturated packings
are hyperuniform [48]. Interestingly, removing rattlers from
MRJ packings of monodisperse spheres results in a deviation
in the structure factor in the limit limk→0 S(k) [45], and it
was thought that the magnitude of this deviation would be
accurately predicted from the assumption that the rattlers be
Poisson distributed. However, our work has shown that there is
significant spatial ordering of the rattlers and so we predict that
the actual deviation from hyperuniformity should be markedly
smaller than this prediction. A related question is whether
or not gR

2 exhibits the same quasi-long-range behavior as
the whole packing, i.e., gR

2 − 1 decaying as −1/r4. To show
this, one must construct very large MRJ packings with very
high numerical fidelity, a nontrivial task, as we have shown
even for modest system sizes. Issues for future consideration
include hyperuniformity in considerably larger packings to
this end.

It is already known that the existence of rattlers in packings
is sensitive to the particle shape; MRJ packings of monodis-
perse superballs, convex polyhedra, and even some ellipsoids
do not exhibit rattlers at all [29,49,50]. It is still unclear what
makes spheres special in that rattlers are such a prominent
feature in their MRJ state. Therefore, it is an interesting
question whether the rattler fraction can be incorporated as
a tunable parameter in sphere packing protocols; as we have
pointed out, controlling the occurrence of hyperstatic regions
is a good place to start. Moreover, in the same way that there is
a maximum packing density that can be achieved, there must
be some upper limit to the rattler fraction in a jammed packing
that is nontrivial to identify; tunneled crystals (which contain
chains of vacancies that permeate the structures) present a
starting upper bound since they have the lowest known density
among strictly jammed packings [6]. In contrast, it would be
interesting if the rattler fraction could be tuned to decrease
towards zero. If so, one might be able to answer the larger
question of how rattlers affect the large-scale properties of a
packing and offer additional insight into the MRJ state.

The situation of geometric frustration that produces rat-
tlers in hard-sphere packings appears to be connected to
an analogous feature arising in real amorphous insulator
solids. Specifically, the latter incorporate local interaction
frustration weak spots compared to the crystalline forms.
This gives rise to low-temperature heat capacity and thermal
conductivity anomalies due to quantum tunneling in two-
level localized degrees of freedom [26,51–54]. The rattlers
examined herein evidently represent the outcome for amor-
phous solids as continuous, realistic interactions pass to the
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FIG. 9. (Color online) The log-weighted probability density
function P and cumulative distribution function C for δmin and
δmax. Notice that there is no overlap between the two distributions,
indicating a generally robust separation between true contacts and
near contacts.

discontinuous hard-sphere limit. Therefore, we suggest that
it would be important to explore the evolution of weak
spots in amorphous materials as one deforms the potential
function continuously from the model potential used to
describe them to the hard-sphere model in which rattlers are
observed.
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APPENDIX A: NUMERICAL FIDELITY AND CONTACT
DISTRIBUTIONS OF MRJ SPHERE PACKINGS

GENERATED USING THE SEQUENTIAL LINEAR
PROGRAMMING METHOD

1. Contact network fidelity

Figure 9 shows the probability density functions and cumu-
lative distribution functions for the minimum and maximum
contact tolerances δmin and δmax for our N = 2000 packings.
We also present this information by percentile in Table I. Not

TABLE I. Percentiles for δmin and δmax for 1000 MRJ configura-
tions with N = 2000.

Percentile δmin δmax

1% 5.27 × 10−13 9.13 × 10−9

5% 5.30 × 10−13 2.60 × 10−8

10% 5.36 × 10−13 6.64 × 10−8

20% 2.19 × 10−12 1.51 × 10−7

50% 8.27 × 10−12 5.25 × 10−7

80% 1.53 × 10−11 1.33 × 10−6

90% 2.22 × 10−11 2.02 × 10−6

95% 2.85 × 10−11 2.64 × 10−6

99% 5.42 × 10−11 4.46 × 10−6

10-15 10-14 10-13 10-12 10-11 10-10 10-9 10-8
δmin / D

10-9
10-8
10-7
10-6
10-5
10-4
10-3

δ m
ax

 / 
D

N = 100
N = 200
N = 500
N = 1000
N = 2000

FIG. 10. (Color online) Scatter plot of δmin and δmax for the pack-
ings generated for various N . The red shaded region illustrates where
δmin � δmax, which is disallowed by definition. Packings that are far
from this region clearly differentiate between physically justified near
contacts and true contacts corresponding to the numerical precision
of the TJ algorithm. In the best cases for N = 2000, the first near
contact has a pair separation seven orders of magnitude larger than
the biggest contact, whereas the average packing has a separation of
about four orders of magnitude. This gap generally increases for the
smaller system sizes.

only do individual packings show a good separation between
δmin and δmax (as seen in Fig. 10, which present these data as a
scatter plot for all of our system sizes), but we have prepared
our packings to such a high degree of fidelity that there is
no overlap between the two probability density functions. The
sharp rise at the end of P (δmin) is due to the truncation criterion
for our simulations.

2. Contact distribution

Because of both the high fidelity of our packings and the
high precision to which contacts are identified, we are able
to present a contact distribution for the backbone spheres
in our packings that exhibits a system-size dependence on
Pr(z) for any given z; see Fig. 11. This arises as a direct
consequence of the fact that all of our packings are exactly
isostatic; the finite-system-size contribution to the isostatic
number that makes the average coordination number slightly
above 6 for finite systems is responsible for the increase in Pr(z)
when z < 6 and decrease when z > 6 as N increases towards
infinity. Given this physical intuition, one might expect that the
contact distribution for the MRJ state has a functional form of
Pr(z; N ) − limN→∞ Pr(z; N ) = cN−α with a critical exponent
α = 1 owing to the nature of the finite-size correction to the
isostatic number. We present the contact distribution for N =
2000 in Table II (see also Fig. 11) since these values should
be reasonably close to those of the infinite-system limit [55].
We also point out that one sphere with z = 12 was found in
each of our ensembles of packings with N = 100, 500, and
1000. The coordination structure about these spheres is always
approximately icosahedral, but with some distortions. Since a
12-fold coordination scenario does not necessarily correspond
to a crystalline arrangement such as fcc or hcp, we do not
regard these observations as necessarily being incompatible
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FIG. 11. (Color online) Contact distribution for the backbone
spheres in our packings, averaged over 1000 isostatic configurations
with N = 100, 200, 500, 1000, and 2000. Vertical bars represent two
standard deviations (error bars corresponding to a 95% confidence
interval are smaller than the markers). The probabilities for z = 11
are very small but nonzero. One sphere with z = 12 was found in
each ensemble of packings with N = 100, 500, and 1000.

with the MRJ state. Our results are in agreement with previous
estimates of the contact distribution [17].

APPENDIX B: ORDER METRIC CALCULATIONS
FOR DISORDERED PACKINGS

In order to quantify the order in our packings, we consider
the well-known bond-orientational order metric Q6 [56],
which is normalized so that the fcc crystal yields an order
metric of unity, defined as

Ql =
[

4π

2l + 1

l∑
m=−l

||〈Ylm(θ (r),φ(r))〉||2
]1/2

,

where Ylm is the spherical harmonic function whose average is
computed over all contacting pairs of spheres. Figure 12 shows
the probability density function for Q6 for 1000 packings
created using the LS algorithm with N = 2000 under rapid
compression as well as our 1000 packings created using the
TJ algorithm with N = 2000. While the packings generated
with the TJ algorithm are clearly more disordered on average,
our findings demonstrate that Q6 is a poor order metric when
discerning differences between highly disordered packings.
This is reasonable because Q6 can be thought of as measuring

TABLE II. Contact probability distribution for MRJ monodis-
perse hard spheres for a system size N = 2000.

z Pr(z)

4 0.1252 ± (3.6 × 10−4)
5 0.2423 ± (5.2 × 10−4)
6 0.2895 ± (5.8 × 10−4)
7 0.2182 ± (4.8 × 10−4)
8 0.0992 ± (3.3 × 10−4)
9 0.0233 ± (1.9 × 10−4)
10 0.0022 ± (6.4 × 10−5)
11 5.480 × 10−5 ± (1.0 × 10−5)
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FIG. 12. (Color online) Probability density functions for the di-
mensionless order metric Q6 for packings generated with the LS and
TJ algorithms with system size N = 2000.

to what extent a packing deviates from a perfect crystal; far
from this reference state, it becomes less discriminating. It is
therefore all the more remarkable that a difference between
the two protocols is discernible using Q6.

Motivated by the discrepancy that is nonetheless evident
for Q6, we compute the g2-based order metric T ∗ [57], which
makes no assumption about a most-ordered reference state,
defined as

T ∗ =
∫ ξc

Dρ1/3 |g2(ξ ) − 1|dξ

ξc − Dρ1/3
,

where ξ = rρ1/3, ρ = N/V is the number density, and ξc is a
cutoff value, chosen here to be 3.5. The qualitative behavior
of T ∗ tends to be independent of ξc as long as the first
several coordination shells are included within the integration
domain. Figure 13 shows the probability density function for
T ∗ for the same collections of configurations. Here T ∗ is
more sensitive with these disordered configurations and there
is a clear distinction between the two protocols. This can be
explained by noting that T ∗ can be thought of as a “disorder
metric” in that its reference state is the Poisson process, for
which T ∗ ≡ 0. Since MRJ-like packings are more similar to
a Poisson process than a regular crystal, they are more easily
distinguished by the T ∗ order metric.
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FIG. 13. (Color online) Probability density functions for the di-
mensionless order metric T ∗ for packings generated with the LS and
TJ algorithms with system size N = 2000.
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While we have considered only two of many order metrics
here, the evidence we present is sufficient to demonstrate a
statistically significant distinction between LS and TJ packings
with regard to order. Moreover, the distributions presented here
tend to narrow with increasing system size as 1/

√
N (data not

shown), and so we expect that these distributions will approach
Dirac δ functions in the infinite-system limit. Examining the
full picture with regard to other order metrics is a subject for
future work.
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