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Composite materials are ideally suited to achieve multifunctionality since the best features of
different materials can be combined to form a new material that has a broad spectrum of desired
properties. Nature’s ultimate multifunctional composites are biological materials. There are presently no
simple examples that rigorously demonstrate the effect of competing property demands on composite
microstructures. To illustrate the fascinating types of microstructures that can arise in multifunctional
optimization, we maximize the simultaneous transport of heat and electricity in three-dimensional,
two-phase composites using rigorous optimization techniques. Interestingly, we discover that the
optimal three-dimensional structures are bicontinuous triply periodic minimal surfaces.
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the conducting phase two is connected and the less con-
ducting phase one is disconnected is an optimal solution.)

equalities that rigorously link different effective proper-
ties to one another (e.g., links between different transport
Increasingly, a variety of performance demands are
being placed on material systems. These include materials
with desirable mechanical, thermal, electromagnetic, op-
tical, chemical, and flow properties, and low weight [1,2].
It is difficult to find homogeneous materials that possess
these multifunctional characteristics. Composite mate-
rials (mixtures of two or more different materials) are
ideally suited to achieve multifunctionality since the best
features of different materials can be combined to form a
new material that has a broad spectrum of desired proper-
ties. The ultimate multifunctional materials are provided
by nature; virtually all biological material systems are
composites that typically are endowed with a superior set
of properties. This is undoubtedly due to the fact that
biological systems must be able to perform a variety of
functions well; i.e., roughly speaking, biological mate-
rials are ‘‘optimized’’ for multifunctional purposes.
Currently, there are no simple examples that rigorously
demonstrate the effect of competing property demands on
composite microstructures. In this Letter, we provide the
first such examples using optimization techniques.

To illustrate the fascinating types of microstructures
that can arise in multifunctional optimization, we con-
sider the simultaneous transport of heat and electricity in
three-dimensional, two-phase composites [3]. Both
phases exist in equal proportions such that phase one is
a good thermal conductor but poor electrical conductor
and phase two is a poor thermal conductor but good elec-
trical conductor. Demanding that the sum of the effective
thermal and electrical conductivities is maximized sets
up a competition between the two effective properties.
(If we maximized only one of the conductivities, say,
thermal conductivity, then the well-known Hashin-
Shtrikman singly coated sphere structures [4] in which
0031-9007=02=89(26)=266601(4)$20.00 
Here we adapt the topology optimization method [5–7]
for this multifunctional optimization. To date, the to-
pology optimization technique has been used to extrem-
ize a single effective property. We have discovered that
certain single-scale bicontinuous structures maximize
the sum of the two effective conductivities and the effec-
tive properties obtained lie on a rigorous cross-property
upper bound. A bicontinuous composite is one in which
both phases are connected across the sample. Inter-
estingly, the optimal bicontinuous structures turn out to
be triply periodic minimal surfaces.

A minimal surface is a surface that is locally area
minimizing. Minimal surfaces necessarily have zero
mean curvature; i.e., the sum of the principal curvatures
at each point is zero. Particularly fascinating are minimal
surfaces that are triply periodic. These structures are
bicontinuous in the sense that the surface divides space
into two disjointed regions that are simultaneously con-
tinuous. Triply periodic minimal surfaces arise in a vari-
ety of applications, including self-assembly processes in
block copolymers [8], nanocomposites [9], micellar ma-
terials [10], and lipid-water systems [11].

In general, it is desired to design a composite material
with N different effective properties or responses, which
we denote by K�1�

e ; K
�2�
e ; . . . ; K

�N�
e , and to know the region

(set) in the multidimensional space of effective proper-
ties in which all composites must lie (see Fig. 1). The
size and shape of this region depends on the specifica-
tion of the phase properties and level of microstructural
information. The determination of the allowable region
is generally a highly complex problem. However, the
identification of the allowable region can be greatly
facilitated if cross-property bounds on the effective
properties can be found. Cross-property bounds are in-
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properties [12–15] and between the conductivity and
elastic moduli [16]). When cross-property bounds are
optimal, they can be used to identify the boundary of
the allowable region. Numerical optimization methods
can then be used to find specific microstructures that lie
on the boundary.
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FIG. 1 (color online). Schematic illustrating the allowable
region in which all composites, with specified phase properties
and microstructural constraints, must lie for the case of two
different effective properties.
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Here we specifically consider a two-phase composite
material in which phase i has electrical conductivity �i,
thermal conductivity �i, and volume fraction 	i, where
i � 1 or 2. Cross-property bounds exist between the ef-
fective electrical conductivity �e and thermal conductiv-
ity �e. Bergman [12] derived the following cross-property
bound:
�2 � �1
�e �	1�1 �	2�2

�
�2 � �1

�e �	1�1 �	2�2
�

3��2�1 � �1�2�

	1	2��2 � �1���2 � �1�
: (1)

Relation (1) gives an upper (lower) bound when the sign of ��2�1 � �1�2�=��1 � �2� is positive (negative). Milton [13]
conjectured and Avellaneda et al. [14] proved that Bergman’s corresponding lower bound (not presented) for isotropic
media can be improved [when ��2�1 � �1�2�=��1 � �2� is positive] by the realizable and thus optimal bound

�1 � 2�2

�1 � �2

�
�2 � 2�1

�1 � �2
�	2

�e � 2�1

�1 � �e

�
�

�1 � 2�2
�1 � �2

�
�2 � 2�1
�1 � �2

�	2
�e � 2�1

�1 � �e

�
: (2)
0.6

φ2=0.5, σ1/σ2=0.1, λ1/λ2=10
The reciprocal bound (1) was shown by Milton to be
optimal at five distinct points on this bound. One of these
points corresponds to a special bicontinuous multiscale
composite: a polycrystal in which each grain is composed
of a laminate consisting of alternating slabs of phases one
and two such that the slab thicknesses are much smaller
than the size of the grain and the grains are randomly
oriented [17]. The effective conductivity of such a statis-
tically isotropic polycrystal has an effective electrical
conductivity �e � ���	2�, where

���	2� � 	1�1 �	2�2 �
	1	2��2 � �1�

2

3�	1�2 �	2�1�
: (3)

We emphasize that this point lies on Bergman’s bound.
Figure 2 shows the lens-shaped region defined by the

cross-property bounds (1) and (2) in the �e-�e plane at a
volume fraction 	2 � 1=2 for a case of ‘‘ill-ordered’’
phases (�1=�2 < 1 and �1=�2 > 1) in which

�1 � 0:1; �2 � 1:0; �1 � 1:0; �2 � 0:1:

(4)

The datum (filled circle) on the upper bound corresponds
to the aforementioned bicontinuous composite. The ques-
tion is whether there is a bicontinuous single-length scale
structure that achieves the same point on the upper bound.

To answer this question, we carried out a multifunc-
tional optimization by maximizing the objective function

� � �e � �e (5)
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FIG. 2. Cross-property bounds and simulation datum for the
effective electrical �e and thermal �e conductivities for ill-
ordered phases (�1=�2 < 1 and �1=�2 > 1) as specified by (4).
The datum on the upper bound corresponds to the bicontinuous
structures described in the text. Elsewhere [18] we have shown
that the two points corresponding to the intersections of the
upper and lower bounds are three-dimensional generalizations
of the two-dimensional single-scale Vigdergauz structures [19].
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for a volume fraction 	1 � 	2 � 1=2 and ill-ordered
phases as specified by (4). Thus, phase one has a high
thermal conductivity but low electrical conductivity and
phase two has a low thermal conductivity but high elec-
trical conductivity. The optimization problem is solved
numerically by adapting the topology optimization tech-
nique [6,7]. Briefly, the design domain is digitized into a
large number of finite elements, and periodic boundary
conditions are used. The effective property at any step is
obtained by averaging (homogenizing) the relevant fields.
The microstructure evolves using well-established linear
programming techniques until the objective function is
extremized (see Refs. [6,7] for further details). The unit
domain was chosen to be a cube and was digitized into
small cubic finite elements (40� 40� 40). Geometric
symmetry (threefold reflection) was imposed to ensure
isotropy of the effective conductivity tensors.

We find that an optimal composite is a bicontinuous
structure, as shown in Fig. 3. Bicontinuity allows the
structure to maximize both properties for the case of
ill-ordered phases. This topological feature (i.e., percola-
tion of both phases) is virtually unique to three dimen-
sions [2]. Note that this bicontinuous structure achieves
the datum (within small numerical error) shown in Fig. 2
for the cross-property upper bound on the sum of the two
conductivities in which �e=�2 � �e=�1 � 0:427. Al-
though we take	1 � 	2 � 1=2, the topological property
of bicontinuity will extend to other volume fractions.

Based on visual inspection of the optimal structure
produced via the topology optimization method, we hy-
pothesize that the bicontinuous structure is a Schwartz
primitive (P) surface, a well-known triply periodic mini-
mal surface with simple cubic symmetry. To verify that
this, indeed, is a Schwartz P minimal surface, we must
find an exact representation of it and then compute its
effective properties. Minimal surfaces can be character-
ized exactly using a Weierstrass (complex integration)
representation, but in practice this is difficult to use
numerically. Instead, we utilize a Landau free-energy
FIG. 3 (color online). A bicontinuous optimal structure at
	1 � 	2 � 1=2 corresponding to maximization of the sum
of the effective electrical and thermal conductivities (�e � �e)
for ill-ordered phases as specified by (4). Left panel: A 2�
2� 2 unit cell of the composite. Right panel: Corresponding
morphology of phase 2.
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type model [20] to calculate numerically a discretization
of a potential  �x� such that  �x� > 0 for points in phase
one and  �x�< 0 for points in phase 2. At the phase
interface,  �x� � 0, which in this case is a Schwartz P
minimal surface.

We obtained the data for this potential (from the au-
thors of Ref. [19]) on a 643 unit cell as well as one for
another minimal surface with macroscopically isotropic
effective conductivities, namely, the Schwartz diamond
(D) surface (see Fig. 4). From these potentials, one can
readily make discretizations of bicontinuous two-phase
composites having a minimal surface as the two-phase
interface boundary. We then used a finite-element code to
calculate numerically the effective conductivities of these
composites. Remarkably, we found that the computed
conductivities for both Schwartz P and D surfaces
matched the ones predicted by the cross-property upper
bound up to three decimal places for case (4). Im-
portantly, we also computed the effective conductivities
for a wide range of phase contrasts, including the infinite-
contrast case (�1=�2 ! 0, �1=�2 ! 1) and found the
same agreement with the corresponding analytical re-
sults. This provides strong evidence that these minimal
surfaces indeed realize the upper bound (within numeri-
cal error), independent of the phase contrast.

One may ask how minimal surfaces arise when ‘‘sur-
face tension’’ is absent in our problem. In order to begin to
answer this question one should note that the case exam-
ined here represents a special point on the cross-property
upper bound (see Fig. 2). The phase volume fractions are
identical (	1 � 	2), and the dimensionless conductivi-
ties are identical (�e=�2 � �e=�1). Thus, the system pos-
sesses phase-inversion symmetry; i.e., the morphology
of phase one is identical to the morphology of phase
two [21]. We also know that if optimal single-scale struc-
tures exist, they must be bicontinuous composites. More-
over, in our numerical optimization study, we imposed
simple cubic symmetry. In summary, an optimal com-
posite should be bicontinuous, possess phase-inversion
symmetry at a volume fraction 	1 � 	2 � 1=2, and pos-
sess simple cubic symmetry. The Schwartz P surface
FIG. 4 (color online). Unit cells of two different minimal
surfaces with a resolution of 64� 64� 64. Left panel:
Schwartz simple cubic surface. Right panel: Schwartz diamond
surface.
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meets all of these conditions. On the other hand, if we
imposed the symmetry of the diamond lattice, we see
from our subsequent numerical calculations, we would
have expected to find the Schwartz D surface. Thus,
provided that the composite is macroscopically isotropic
at 	1 � 	2 � 1=2, the minimal surface that achieves the
point on the upper bound is not unique. A fruitful rig-
orous approach to proving that these minimal surfaces are
indeed optimal would be to use minimum energy prin-
ciples to develop optimality conditions on the fields and
ultimately on the mean curvature of the interface between
the phases. Such a study will be the subject of a future
paper. Note that if one breaks the symmetry of the prob-
lem by moving off the point	1 � 	2 � 1=2, the optimal
structure (if it exists) will still be bicontinuous but will
not be a minimal surface. In future studies, it will be
interesting to investigate whether such structures are
bicontinuous structures with interfaces of constant
mean curvature, which become minimal surfaces at the
point 	1 � 	2 � 1=2.

Significantly, the aforementioned optimal bicontinuous
composites can be made using sol-gel processing tech-
niques [9]. Interestingly, cell membranes resembling
periodic minimal surfaces have been observed in cyto-
plasmic organelles, such as mitochondria and chloro-
plasts [22], in which a variety of different transport
processes occur. Our work tantalizingly suggests that it
may be fruitful to explore the origins of such structures
under a new light, namely, whether the optimization of
competing functionalities within organelles can explain
their resulting structures. Finally, note that our method-
ology is quite general and can be employed to discover
the novel optimal microstructures that are expected to
emerge when any combination of functionalities (e.g.,
mechanical, optical, chemical, electrical, thermal, and
flow properties) compete against one another. Such analy-
ses will lead to insights into the genesis of the optimal
microstructures and will be pursued in future work.
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