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Exact Expression for the Effective Elastic Tensor of Disordered Composites
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We derive new, exact series expansions for the effective elastic tensor of anisafrdicensional,
two-phase disordered composites whosth-order tensor coefficients are integrals involving
n-point correlation functions that characterize the structure. These series expansions, valid for any
structure, perturb about certain optimal dispersions. Third-order truncation of the expansions results in
formulas for the elastic moduli of isotropic dispersions that are in very good agreement with benchmark
data, always lie within rigorous bounds, and are superior to popular self-consistent approximations.
[S0031-9007(97)03646-6]
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Perturbation expansions have been developed for the efige, and denotes a double contraction. The local stress
fective elastic tensa€, of composites for small variations must satisfy the equilibrium requirement
in the phase elastic tensors [1]. Because of the nature of V-o(x)=0, 2)
the integral operator, one must contend with conditionally , . .

. . ; . ’such that Hooke’s law is obeyed locally, i.e.,

convergent integrals. One resolution to this problem is to
carry out a “renormalization” analysis [2]. Drawbacks of o(x) = C(x):e(x)
such classical expansions are that they are formal and valid = Cie(x) + p(x), A3)

only when phase moduli are nearly the same. . B ) . .
In this Letter we develop new, exact series expan-wherep(x) = x(®)[C; — C,]e(x) is the inducegpolar-

sions for the effective elastic tensor of macroscopicalIyzationf'tressf ten;c,or ang(x) i_s the character_istic function
anisotropic-dimensional, two-phase composite media ofof the polarlzed phase 2 (i.e., equal to 1 in phase 2 and
arbitrary microstructure by introducing an integral equa-zero otherW|_se).

tion for the so-called¢avity’ strain field. The expansions . The solut|_on of (2) and (3) can be expressed by the
are not formal, but rather theth-order tensor coefficients integral relation [4]

are given explicitly in terms of integrals over products of _ 0 [ / Ner (<!

certain tensor fields and a determinant involvimgoint ulx) = uix) + f dx Vgx, x):p(x), @
statistical correlation functions that render the integralsyhere, in component form,

absolutely convergent in the infinite-volume limit. Thus,

no renormalization analysis is required. Interestingly, the ) = ﬁ In(%)éij + binin;, d =2, 5)
series expressions may be regarded as expansions that8ij ’ o,
perturb about optimal dispersions described below. By ayz + b, d=3,

truncating the exact expansion after third-order terms, wgs the infinite-spacef-dimensional Green’s functio) is

find approximate relations for the effective moduli of the total solid angle contained ind&adimensional sphere,

isotropic dispersions that are in very good agreement with = x — x/, n = r/|r|, anda, andb, are parameters that

benchmark data, always lie within rigorous bounds, andiepend on phase 1 moduli [5].

are superior to self-consistent approximations. Now to obtain the strain, one must differentiate (4);
Consider a large but finite-sized, ellipsoidal, macro-however, because of the singular nature of the integral

scopically anisotropic composite specimen in arbitraryone cannot simply differentiate under the integral sign.

space dimension/ comprised of two isotropic phases Excluding a spherical region or cavity from the origin in

with fourth-order elastic tensor€; and C,. The elas- (4) and integrating by parts yields

tic tensorC; for phasei can be expressed in terms of the

phase bulk and shear mod&i andG;, respectively, via e(x) = e'(x) + ] dx' G(r)p(x'), (6)

C; = dK;A;, + 2G;A,, whereA;, andA; are the projec-

tion tensors [3]. Now let us embed this specimen in arvhere

infinite referencephase, taken to be phase 1, and subject G(r) = —AS6(r) + H(r). @)

it to an applied strain fiel@®(x) at infinity. The effective

i . . HereA is the constant fourth-order tensor
elastic tensof, is defined by the averaged Hooke’s law:

Ay

(o(x)) = C.i(e(x)), 1) A=
+ —
where o(x) and £(x) = 5[Vu + (Vu)’] are the local dK; +2(d — 1)G,
stress and strain tensors, respectivalyx) is the local d(Ky + 2G)A, ®)
displacement, angular brackets denote an ensemble aver- Gi(d + 2)[dK, + 2(d — 1)G{]’
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that arises because of the exclusion of the spherical cavity

in (4), 6(r) is the Dirac delta function, anH(r) is the
symmetrized double gradieNtVg(r) [4].

We depart substantially from previous treatments by

introducing an integral equation [6] for thedvity’ strain
field f by substituting (7) into expression (6), i.e.,

(9)

which is related to the usual strain by the expression

f(x) ={I + A [C(x) — C]}:e(x). (10)

The polarization and cavity strain field are related via

p(x) = L (x)f(x), (11)

L(x) ={Cx) — CHI + A[Cx) - C, ]} (12)
The effective tensok., is given by the averaged relation

(p(x)) = L.«f(x)), (13)

wherelL, is related to the effective elastic tend0y via
L, ={C. — CiH{I + A[C, - C,\]}"". (14)

f(x) = e(x) + fdx'H(x - x)px),

B, = f 2ULD[(1L2) - ¢21.  (20)

_ n—2
B, — <—1> fd2--~fdnU(1,2):U(2,3)
03}
Ul — 1,n)A,, n=3, (22)
A, is the position-dependent determinant
S»(1,2) 51(2) 0
S3(1,2,3) $>(2,3) 0
Ay = : : . :
So(l,..n) Su_i(2....n) Son — 1,n)
(22)

and S,(xi,...,x,) = {(y(x1)--- x(x,,)) is the n-point
correlation function[7] for phase2. Note that then-point
tensor coefficienB,, involves the parameters

Kz — Kl
o= ——2 81
K> + G1
B G2 - G,
~ = G\[dK,/2+(d+ 1) (d—2)G,/d] (23)
Gy + K, 172G,

It is desired to find an explicit expression for the In analogy with dielectric theory, we refer toand u as

effective moduliL, (or C.) using the solution of (9)
which we rewrite in schematic operator notation as

f=¢"+ Hp, (15)

where for a general operatdt, I'p = [d2T'(1,2):p(2),
and 1 and 2 represertandx’, respectively. Multiplying

(15) from the left byL (x) yields an integral equation for

the polarizatiorp having the solution
p = Te’,

whereT = L[I — LH] L
yields

(16)

(p) =(T)e". (17)

Ensemble averaging (16)

thebulk and shear moduli polarizabilitiesespectively.

Since the quantity within the brackets of (20) and the
determinantd,, in (21) identically vanish at the specimen
boundary [8], because of the asymptotic properties of the
S, [7], the integrals in (19) are independent of the shape
of the macroscopic ellipsoid (i.e., absolutely convergent),
and hence any convenient shape may be used in the
infinite-volume limit. Interestingly, we can show [4] that
the series expressions (19) may be regarded as expansions
that perturb about the optimal structures [9—11] that
realize the isotropic Hashin-Shtrikman (HS) bounds [9]
and Willis’ anisotropic bounds [12]. For simplicity, we
discuss the isotropic instance below.

The isotropic case can be obtained from (19) after

It is seen that the operat¢F) generally involves products appropriate contractions [4], Wlth the results

of the tensorH which decays to zero like ¢ for large

r. Thus,(T) at best involves conditionally convergent
integrals and hence must be dependent upon the shape of

the ellipsoidal composite specimen.

Given the nonlocal nature of the relation (17), the

remaining strategy is clear.

applied fielde® in favor of the appropriate average field
in order to get a local, shape-independent relation. Thu

we invert (17) and average (15) to obtain

() = X(p), (18)
where X = (T)"! + H. Comparing (18) to (14) and
letting U(r) = L:H(r) [where L is given by (14) with
C. replaced byC,] yields the desired exact expression

ILAL) ' = ol — D B,, (19)
n=2
where ¢, is the volume fraction of phase 17, is the

fourth-order identity tensor, and
682

S

2——¢2—ch, (24)
Ke n=3
o2 = g, - Z D,, (25)
Me
One must eliminate th‘?Nhere the scalar€, = A, i B, anan — m X

A, i B, the symbol: denotes the quadruple dot product,

and
K., — K;
Ke = —— 50—
¢ K, + 2(dd D Gy
G, — G
He = Gi[dK,\ 2+ (d+ 1) (d=2)G,/d] ° (26)
Ge + K, +2G,

are the effective polarizabilities. In contrast to classical
perturbation expansions, the expansions (24) and (25) are
nonclassicalin the sense that the expansion parameters
are the polarizabilitiex andw and, for certain structures,
can converge rapidly for any phase contrast.
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To understand the physical meaning of the expansiom which the inclusions, taken to be the polarized phase,
(24) and (25), it is helpful to consider the structuresare prevented from forming large cluster€onsequently,
for which then-point parameters’, or D, vanish. For we contend that the first few terms of this expansion will
d = 2 andd = 3, expression (24) wittC,, = 0 for all n  provide an excellent approximation of the effective bulk
is recognized to coincide with the isotropic HS boundsmodulusK, and shear modulus, of such dispersions.
on the effective bulk moduluk, [8], and hence is Accordingly, simplification of (24) and (25) through
exact for the assemblages of coated circlés=(2) and  third-order terms gives

coated spheresd(= 3) that realize the bounds [9] as K (d+2)(d - 1)Gku
well as certain finite-rank laminates [10]. Similarly, for 2T 1= d(K, + 2G)) OLdr, (27)
d =2 andd = 3, expression (25) withD, = 0 for all ‘
n equals the isotropic HS bounds on the effective shear , # _ | _ 2G1kp Hob
modulus G, [13] and hence is exact for certain finite- Me d(K, + 2Gy) !
rank laminates in both two and t_hree Q|menS|ons [10]. (@ — 4G,2K; + 3G)u?
Note that for either the coated-inclusion assemblages > L
- . ) 2d(K; + 2Gy)
or finite-rank laminates, one of the phases is always a 5
disconnected, dispersed phase in a connected matrix phase + L [dKl + (d ~ 2)G, } Wb, (28)
(except trivially wheng, = 1). 2d K, + 2G; b

Therefore, expansions (24) and (25) should convergavhere{, and n, are three-point microstructural parame-
rapidly for any values of the phase moduli for dispersiongers

_ d’ dr ds o m)? — _ 52r)Sals)
§2 - (d _ 1)¢1¢292f Vd sd [d(n m)2 1]|:S3(r,S) ¢2 i|’ (29)
_ (@d+2)(5d +6) (d + 2)° dr ds o  5(1)Ss(s)
m = s s [ [ S 2w - 3 s - 2RO,
(30

andn = r/|r| andm = s/|s| are unit vectors. The threel- surprisingly, the SC formula violates the upper bound at

point parameters, and 7, (which always lie in the moderatep,.

interval [0, 1]) also arise in rigorous three-point bounds Figure 3 compares relation (27) with= 3 and the SC

on the effective elastic moduli [7,14,15,16]. formula [17] to the numerical data of Nunan and Keller
We have compared the third-order approximations (27)22] for superrigid face-centered cubic arrays of spheres in

and (28) for K, and G, to benchmark data, rigorous a compressible matrix. The prediction of (27), applicable

bounds, and popular self-consistent (SC) approximationt cubic symmetric composites, is remarkably accurate,

[17] for a variety of 2D and 3D isotropic dispersions.

In Fig. 1 we compare the prediction of (28) with= 2

for the effective transverse shear moduliisof oriented, 15.0 ' ' ' —
hexagonal arrays of glass fibers (phase 2) in an epoxy Hexagonal Arrays /
matrix to the corresponding simulation data of Eischen 6/G,=225, G/K=0.3, G/K,=0.6 /
and Torquato [18]. Formula (28) provides an excellent T SoEeBa /
estimate ofG, for all volume fractions. The three-point 10.0 | Formula (28) Fa i
Silnutzer [14,15] lower bound (not shown) is very slightly ——= SCformula /e

~~~~~~~~ Upper bound // /

below (28) and the three-point Gibiansky-Torquato [16]
upper bound is somewhat above (28). Note that the SC
formula begins to violate the upper bound at snasil
Consider now a fiber-reinforced material consisting
of oriented, superrigid, circular fibers that a@ndomly
arranged in a compressible matrix. We are not aware of
comprehensive benchmark data for this case. However,
we can compare our results to the rigoraugss-property 0.0 ' : :
. .. 0.0 0.2 0.4 0.6 0.8 1.0
bounds[20] that use effective conductivity measurements Fiber volume fraction, o,
[21] to bound the effective elastic moduli (and vice

versa). Figure 2 shows that formula (27) with= 2 ; ;
for the effective transverse bulk modulug is below G./G1 vs fiber volume fractiond, for hexagonal arays of
circular glass fibers in an epoxy matrix. Simulation data are

the sharp cross-property upper bound and slightly abovgom Ref. [18], and parametegs and »,, for use in (28) and
the three-point Silnutzer lower bound (not shown). Notbounds, are from Refs. [19] and [18], respectively.

Dimensionless shear modulus, G,/G,

FIG. 1. Dimensionless effective transverse shear modulus
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14.0 : l . l an expansion that perturbs about optimal dispersions
and suggested accurate approximations for the moduli
1 of a class of isotropic dispersions. SC formulas did

Random Arrays ,[
I
| not provide good moduli estimates for dispersions and
I
I
]

120
G/G,=K,/K,=%, G/K =0.4

100 | — E‘;:)“;lr"go(j:; 1 indeed violated bounds. Finally, note that the procedure
oo | === SCfomuia / outlined here can be used to find exact representations of
o I l -

other physical properties that are defined by local linear
constitutive laws.

The author thanks L. Gibiansky for useful discussions
and the AFOSR and OBES, Department of Energy for
supporting this work.
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