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Exact Expression for the Effective Elastic Tensor of Disordered Composites
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We derive new, exact series expansions for the effective elastic tensor of anisotropic,d-dimensional,
two-phase disordered composites whosenth-order tensor coefficients are integrals involving
n-point correlation functions that characterize the structure. These series expansions, valid for any
structure, perturb about certain optimal dispersions. Third-order truncation of the expansions results in
formulas for the elastic moduli of isotropic dispersions that are in very good agreement with benchmark
data, always lie within rigorous bounds, and are superior to popular self-consistent approximations.
[S0031-9007(97)03646-6]
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Perturbation expansions have been developed for the
fective elastic tensorCe of composites for small variations
in the phase elastic tensors [1]. Because of the nature
the integral operator, one must contend with conditiona
convergent integrals. One resolution to this problem is
carry out a “renormalization” analysis [2]. Drawbacks o
such classical expansions are that they are formal and v
only when phase moduli are nearly the same.

In this Letter we develop new, exact series expa
sions for the effective elastic tensor of macroscopica
anisotropic,d-dimensional, two-phase composite media
arbitrary microstructure by introducing an integral equ
tion for the so-called “cavity” strain field. The expansions
are not formal, but rather thenth-order tensor coefficients
are given explicitly in terms of integrals over products o
certain tensor fields and a determinant involvingn-point
statistical correlation functions that render the integra
absolutely convergent in the infinite-volume limit. Thus
no renormalization analysis is required. Interestingly, t
series expressions may be regarded as expansions
perturb about optimal dispersions described below.
truncating the exact expansion after third-order terms,
find approximate relations for the effective moduli o
isotropic dispersions that are in very good agreement w
benchmark data, always lie within rigorous bounds, a
are superior to self-consistent approximations.

Consider a large but finite-sized, ellipsoidal, macr
scopically anisotropic composite specimen in arbitra
space dimensiond comprised of two isotropic phase
with fourth-order elastic tensorsC1 and C2. The elas-
tic tensorCi for phasei can be expressed in terms of th
phase bulk and shear moduliKi andGi, respectively, via
Ci ­ dKiLh 1 2GiLs, whereLh andLs are the projec-
tion tensors [3]. Now let us embed this specimen in
infinite referencephase, taken to be phase 1, and subje
it to an applied strain field́0sxd at infinity. The effective
elastic tensorCe is defined by the averaged Hooke’s law

ks sxdl ­ Ce:k´sxdl , (1)
where s sxd and ´sxd ­

1
2 f=u 1 s=udT g are the local

stress and strain tensors, respectively,usxd is the local
displacement, angular brackets denote an ensemble a
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age, and: denotes a double contraction. The local stre
must satisfy the equilibrium requirement

= ? ssxd ­ 0 , (2)

such that Hooke’s law is obeyed locally, i.e.,

ssxd ­ Csxd:´sxd

­ C1´sxd 1 psxd , (3)

wherepsxd ­ xsxd fC2 2 C1g:´sxd is the inducedpolar-
izationstress tensor andxsxd is the characteristic function
of the “polarized” phase 2 (i.e., equal to 1 in phase 2 a
zero otherwise).

The solution of (2) and (3) can be expressed by t
integral relation [4]

usxd ­ u0sxd 1
Z

dx0 =gsx, x0d:psx0d , (4)

where, in component form,

gijsrd ­

8><>:
1

2VG1
ln

µ
1
r

∂
dij 1 b1ninj , d ­ 2 ,

a1
dij

rd22 1 b1
ninj

rd22 , d $ 3 ,
(5)

is the infinite-space,d-dimensional Green’s function,V is
the total solid angle contained in ad-dimensional sphere,
r ­ x 2 x0, n ­ ryjrj, anda1 andb1 are parameters tha
depend on phase 1 moduli [5].

Now to obtain the strain, one must differentiate (4
however, because of the singular nature of the integ
one cannot simply differentiate under the integral sig
Excluding a spherical region or cavity from the origin i
(4) and integrating by parts yields

´sxd ­ ´0sxd 1
Z

dx0 Gsrd:psx0 d , (6)

where

Gsrd ­ 2Adsrd 1 Hsrd . (7)

HereA is the constant fourth-order tensor

A ­
Lh

dK1 1 2sd 2 1dG1

1
dsK1 1 2G1dLs

G1sd 1 2d fdK1 1 2sd 2 1dG1g
, (8)
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that arises because of the exclusion of the spherical ca
in (4), dsrd is the Dirac delta function, andHsrd is the
symmetrized double gradient==gsrd [4].

We depart substantially from previous treatments
introducing an integral equation [6] for the “cavity” strain
field f by substituting (7) into expression (6), i.e.,

fsxd ­ ´0sxd 1
Z

dx0 Hsx 2 x0 d:psxd , (9)

which is related to the usual strain by the expression

fsxd ­ hI 1 A:fCsxd 2 C1gj:´sxd . (10)

The polarization and cavity strain field are related via

psxd ­ L sxd:fsxd , (11)

L sxd ­ hCsxd 2 C1j hI 1 A:fCsxd 2 C1gj21 . (12)

The effective tensorLe is given by the averaged relation

kpsxdl ­ Le:kfsxdl , (13)

whereLe is related to the effective elastic tensorCe via

Le ­ hCe 2 C1j hI 1 A:fCe 2 C1gj21 . (14)

It is desired to find an explicit expression for th
effective moduli Le (or Ce) using the solution of (9)
which we rewrite in schematic operator notation as

f ­ ´0 1 Hp , (15)

where for a general operatorG, Gp ;
R

d2 Gs1, 2d:ps2d,
and 1 and 2 representx andx0, respectively. Multiplying
(15) from the left byL sxd yields an integral equation fo
the polarizationp having the solution

p ­ T´0, (16)

where T ­ L fI 2 L Hg21. Ensemble averaging (16
yields

kpl ­ kTl´0 . (17)

It is seen that the operatorkTl generally involves products
of the tensorH which decays to zero liker2d for large
r . Thus, kTl at best involves conditionally convergen
integrals and hence must be dependent upon the shap
the ellipsoidal composite specimen.

Given the nonlocal nature of the relation (17), th
remaining strategy is clear. One must eliminate t
applied field´0 in favor of the appropriate average fiel
in order to get a local, shape-independent relation. Th
we invert (17) and average (15) to obtain

kf l ­ Xkpl , (18)

where X ­ kTl21 1 H. Comparing (18) to (14) and
letting Usrd ­ L:Hsrd [where L is given by (14) with
Ce replaced byC2] yields the desired exact expression

f2
2L:sLed21 ­ f2I 2

X̀
n­2

Bn , (19)

where f2 is the volume fraction of phase 2,I is the
fourth-order identity tensor, and
682
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B2 ­
Z

d2 Us1, 2d fS2s1, 2d 2 f2
2 g , (20)

Bn ­

µ
21
f2

∂n22 Z
d2 · · ·

Z
dn Us1, 2d:Us2, 3d

:::Usn 2 1, ndDn , n $ 3 , (21)
D n is the position-dependent determinant

D n ­

ØØØØØØØØØØ
S2s1, 2d S1s2d · · · 0

S3s1, 2, 3d S2s2, 3d · · · 0
...

...
. ..

...
Sns1, . . . , nd Sn21s2, . . . , nd · · · S2sn 2 1, nd

ØØØØØØØØØØ
(22)

and Snsx1, . . . , xnd ­ kxsx1d · · · xsxndl is the n-point
correlation function[7] for phase2. Note that then-point
tensor coefficientBn involves the parameters

k ­
K2 2 K1

K2 1
2sd21d

d G1

,

m ­
G2 2 G1

G2 1
G1fdK1y21sd11d sd22dG1ydg

K112G1

. (23)

In analogy with dielectric theory, we refer tok andm as
thebulk and shear moduli polarizabilities,respectively.

Since the quantity within the brackets of (20) and th
determinantDn in (21) identically vanish at the specimen
boundary [8], because of the asymptotic properties of t
Sn [7], the integrals in (19) are independent of the sha
of the macroscopic ellipsoid (i.e., absolutely convergen
and hence any convenient shape may be used in
infinite-volume limit. Interestingly, we can show [4] tha
the series expressions (19) may be regarded as expans
that perturb about the optimal structures [9–11] th
realize the isotropic Hashin-Shtrikman (HS) bounds [
and Willis’ anisotropic bounds [12]. For simplicity, we
discuss the isotropic instance below.

The isotropic case can be obtained from (19) aft
appropriate contractions [4], with the results

f2
2

k

ke
­ f2 2

X̀
n­3

Cn , (24)

f2
2

m

me
­ f2 2

X̀
n­3

Dn , (25)

where the scalarsCn ­ Lh ] Bn andDn ­
2

sd12d sd21d 3

Ls ] Bn, the symbol] denotes the quadruple dot produc
and

ke ­
Ke 2 K1

Ke 1
2sd21d

d G1

,

me ­
Ge 2 G1

Ge 1
G1fdK1y21sd11d sd22dG1ydg

K112G1

, (26)

are the effective polarizabilities. In contrast to classic
perturbation expansions, the expansions (24) and (25)
nonclassicalin the sense that the expansion paramete
are the polarizabilitiesk andm and, for certain structures,
can converge rapidly for any phase contrast.
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To understand the physical meaning of the expans
(24) and (25), it is helpful to consider the structure
for which then-point parametersCn or Dn vanish. For
d ­ 2 andd ­ 3, expression (24) withCn ­ 0 for all n
is recognized to coincide with the isotropic HS bound
on the effective bulk modulusKe [8], and hence is
exact for the assemblages of coated circles (d ­ 2) and
coated spheres (d ­ 3) that realize the bounds [9] as
well as certain finite-rank laminates [10]. Similarly, fo
d ­ 2 and d ­ 3, expression (25) withDn ­ 0 for all
n equals the isotropic HS bounds on the effective she
modulus Ge [13] and hence is exact for certain finite
rank laminates in both two and three dimensions [10
Note that for either the coated-inclusion assemblag
or finite-rank laminates, one of the phases is always
disconnected, dispersed phase in a connected matrix ph
(except trivially whenf2 ­ 1).

Therefore, expansions (24) and (25) should conver
rapidly for any values of the phase moduli for dispersio
-
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in which the inclusions, taken to be the polarized phas
are prevented from forming large clusters.Consequently,
we contend that the first few terms of this expansion wi
provide an excellent approximation of the effective bulk
modulusKe and shear modulusGe of such dispersions.

Accordingly, simplification of (24) and (25) through
third-order terms gives

f2
k

ke
­ 1 2

sd 1 2d sd 2 1dG1km

dsK1 1 2G1d
z2f1 , (27)

f2
m

me
­ 1 2

2G1km

dsK1 1 2G1d
z2f1

1
sd2 2 4dG1s2K1 1 3G1dm2

2dsK1 1 2G1d2
z2f1

1
1

2d

∑
dK1 1 sd 2 2dG1

K1 1 2G1

∏2

m2h2f1 , (28)

wherez2 and h2 are three-point microstructural parame
ters
z2 ­
d2

sd 2 1df1f2V2

Z Z dr
rd

ds
sd fdsn ? md2 2 1g

∑
S3sr, sd 2

S2srdS2ssd
f2

∏
, (29)

h2 ­ 2
sd 1 2d s5d 1 6d

d2
z2 1

sd 1 2d2

sd 2 1df1f2V2

Z Z dr
rd

ds
sd

fdsd 1 2d sn ? md4 2 3g
∑

S3sr, sd 2
S2srdS2ssd

f2

∏
,

(30)
at
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andn ­ ryjrj andm ­ syjsj are unit vectors. The three
point parametersz2 and h2 (which always lie in the
interval [0, 1]) also arise in rigorous three-point boun
on the effective elastic moduli [7,14,15,16].

We have compared the third-order approximations (2
and (28) for Ke and Ge to benchmark data, rigorou
bounds, and popular self-consistent (SC) approximati
[17] for a variety of 2D and 3D isotropic dispersion
In Fig. 1 we compare the prediction of (28) withd ­ 2
for the effective transverse shear modulusGe of oriented,
hexagonal arrays of glass fibers (phase 2) in an ep
matrix to the corresponding simulation data of Eisch
and Torquato [18]. Formula (28) provides an excelle
estimate ofGe for all volume fractions. The three-poin
Silnutzer [14,15] lower bound (not shown) is very slight
below (28) and the three-point Gibiansky-Torquato [1
upper bound is somewhat above (28). Note that the
formula begins to violate the upper bound at smallf2.

Consider now a fiber-reinforced material consisti
of oriented, superrigid, circular fibers that arerandomly
arranged in a compressible matrix. We are not aware
comprehensive benchmark data for this case. Howe
we can compare our results to the rigorouscross-property
bounds[20] that use effective conductivity measuremen
[21] to bound the effective elastic moduli (and vic
versa). Figure 2 shows that formula (27) withd ­ 2
for the effective transverse bulk modulusKe is below
the sharp cross-property upper bound and slightly ab
the three-point Silnutzer lower bound (not shown). N
s
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surprisingly, the SC formula violates the upper bound
moderatef2.

Figure 3 compares relation (27) withd ­ 3 and the SC
formula [17] to the numerical data of Nunan and Kelle
[22] for superrigid face-centered cubic arrays of spheres
a compressible matrix. The prediction of (27), applicab
to cubic symmetric composites, is remarkably accura

FIG. 1. Dimensionless effective transverse shear modu
GeyG1 vs fiber volume fractionf2 for hexagonal arrays of
circular glass fibers in an epoxy matrix. Simulation data a
from Ref. [18], and parametersz2 and h2, for use in (28) and
bounds, are from Refs. [19] and [18], respectively.
683
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FIG. 2. Dimensionless effective transverse bulk modulu
KeyK1 vs fiber volume fractionf2 for random arrays of circu-
lar superrigid fibers in a compressible matrix. Cross-prope
upper bound uses conductivity data of Ref. [20] andz2 values,
for use in (27), are from Ref. [19].

whereas the SC formula begins to diverge increasing
from the data for values of the particle volume fractio
f2 . 0.3. The Beran-Molyneux three-point lower boun
is virtually indistinguishable from the prediction (27).

To summarize, by careful treatment of the integr
equation for the cavity strain field, we are able to fin
an explicit, exact expression for the effective elast
tensor of arbitrary,d-dimensional, two-phase composites
This exact representation is powerful, enabling one
prove a variety of rigorous results [4]. For example
we can show [4] that the effective shear modulusGe is
independent of the microstructure and is exactly equal
the arithmetic average (G1f1 1 G2f2) in the limit that
the space dimensiond ! `. Our choice of excluding
a spherical cavity in the singular integrals resulted

FIG. 3. Dimensionless effective bulk modulusKeyK1 vs
particle volume fractionf2 for face-centered cubic arrays of
superrigid spheres in a compressible matrix. Numerical da
are from Ref. [21] andz2 values, for use in (27), are from
Ref. [19].
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an expansion that perturbs about optimal dispersio
and suggested accurate approximations for the mod
of a class of isotropic dispersions. SC formulas di
not provide good moduli estimates for dispersions an
indeed violated bounds. Finally, note that the procedu
outlined here can be used to find exact representations
other physical properties that are defined by local linea
constitutive laws.
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