Synthetic Biology
Wang MS and Hecht MH (2020) A Completely De Novo ATPase from Combinatorial Protein Design J. Am. Chem. Soc.   DOI: 10.1021/jacs.0c02954
Mancini JA, Pike DH, Tyrishkin AM, Haramaty L, Wang MS, Poudel S, Hecht MH, Nanda V (2020) Design of a Fe4S4 Cluster into the Core of a De Novo 4‐Helix Bundle; DOI:10.1002/bab.2003
Zarzhitsky S, Jiang A, Stanley E, Hecht MH (2020) Harnessing Synthetic Biology to Enhance Heterologous Protein Expression. Protein Science, 29(8), 1698-1706; DOI:10.1002/pro.3907
Kimura N, Mochizuki K, Umezawa K, Hecht MH, Arai R (2020) Hyperstable De Novo Protein with a Dimeric Bisecting Topology. ACS Synthetic Biology, 9(2), 254-9; DOI:10.1021/acssynbio.9b00501
Karas C, Hecht MH (2020) A Strategy for Combinatorial Cavity Design in De Novo Proteins. Life, 10(2), 9;  DOI:10.3390/life10020009
Wang MS, Hoegler K, Hecht MH (2019) Unevolved De Novo Proteins Have Innate Tendencies to Bind Transition Metals. Life, 9, 8;  DOI:10.3390/life9010008
Hecht MH, Zarzhitsky S, Karas C, Chari S  (2018)  Are Natural Proteins Special? Can We Do That?  Current Opinion in Structural Biology  48, 124-132.   DOI : 10.1016/
Donnelly AE, Murphy GS, Digianantonio KM, Hecht MH (2018) A De Novo Enzyme Catalyzes a Life-Sustaining Reaction in E. coli.  Nature Chemical Biology  14, 253–255   DOI: 10.1038/nchembio.2550
Hoegler KJ, Hecht MH (2018)  Artificial Gene Amplification in Escherichia Coli Reveals Numerous Determinants Enabling Resistance to Metal Toxicity.   J. Molecular Evolution  86, 103–110   DOI: 10.1007/s00239-018-9830-3 
Kobayashi N, Inano K, Sasahara K, Sato T, Miyazawa K, Fukuma T, Hecht MH, Song C, Murata K, Arai R (2018) Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks. ACS Synthetic Biology 7 1381–1394.    DOI: 10.1021/acssynbio.8b00007
Digianantonio KM, Korolev, M, Hecht MH (2017) A Non-Natural Protein Rescues Cells Deleted for a Key Enzyme in Central Metabolism. ACS Synthetic Biology  6, 694–700. DOI: 10.1021/acssynbio.6b00336
Digianantonio KM, Hecht MH (2016) A Protein Constructed De Novo Enables Cell Growth by Altering Gene Regulation Proc. Natl.  Acad. Sci.(USA) 113, 2400–2405. doi: 10.1073/pnas.1600566113
Murphy GS, Greisman JB, Hecht MH (2015) De Novo Proteins with Life-Sustaining Functions are Structurally Dynamic. Molec. Biology. 428, 399-411.
Hoegler KJ, Hecht MH (2016) A De Novo Protein Confers Copper Resistance in Escherichia Coli. Protein Science 25, 1249-1259. DOI: 10.1002/pro.2871
Kobayashi N, Yasase K, Sato T, Hecht MH, Arai R (2015) Self-Assembling Nano-Architectures Created from a Protein Nano-Building Block Using Domain-Swapped Dimeric De Novo Protein. J. Am. Chem. Soc. 137, 11285–11293.   DOI: 10.1021/jacs.5b03593   (Cover of JACS).
Smith BA, Mularz AM and MH Hecht (2014) Divergent evolution of a bifunctional de novo protein. Protein Science (24):246-252.
Patel, SC & Hecht MH (2012) Directed Evolution of the Peroxidase Activity of a De Novo Designed Protein. Protein Engineering, Design& Selection (PEDS) (Cover Article) 25, 445–451. DOI: 10.1093/protein/gzs025
Cherny I, Korolev M, Koehler AN and MH Hecht (2012)Proteins from an Unevolved Library of de novo Designed Sequences Bind a Range of Small Molecules. ACS Synthetic Biology, 1, 130-138.
Arai R, Kobayashi N, Kimura A, Sato T, Matsuo K, Wang AF, Platt JM, Bradley LH, & Hecht MH (2012) Domain-Swapped Dimeric Structure of a Stable and Functional De Novo 4-Helix Bundle protein, WA20. Physical Chemistry B. 116, 6789–6797. DOI: 10.1021/jp212438h
Smith BA & Hecht MH (2011) Functional de novo Proteins (Review). Current Opinion in Chemical Biology., 15, 421–426.
Das A, Wei Y, Pelczer I & Hecht MH (2011) Binding of small molecules to cavity forming mutants of de novo designed protein. Protein Science (20):702-711.
Fisher MA, McKinley KL, Bradley LH, Viola SR & Hecht MH (2011) De Novo Designed Proteins From a Library of Artificial Sequences Function in Escherichia Coli and Enable Cell Growth. PLoS ONE 6(1): e15364.
Patel S, Bradley LH, Jinadasa S, Hecht MH. (2009) Cofactor Binding and Enzymatic Activity in an Unevolved Superfamily of De Novo Designed 4-Helix Bundle Proteins. Protein Science 18, 1388-1400.
Go A, Kim S, Baum J, & Hecht MH (2008) Structure and Dynamics of De novo Proteins from a Designed Superfamily of 4-Helix Bundles. Protein Science 17, 4.
Das A, Hecht MH (2007) Peroxidase Activity of De Novo Heme Proteins Immobilized on Electrodes. J. Inorganic Biochemistry 101, 1820-1826.
Das A, Trammell SA, & Hecht MH (2006) Electrochemical and ligand binding studies of a de novo heme protein.Biophysical Chemistry 123,102-112.
Bradley LH, Thumfort P, Hecht MH. (2006) De Novo Proteins from Binary Patterned Combinatorial Libraries. Chapter 3 in Protein Design: Methods & Applications in Methods in Molecular Biology (Humana Press) 340, 53-69.
Hu Y, Das A, Hecht MH & Scoles G (2005) Nanografting De Novo Proteins onto Gold Surfaces. Langmuir 21,9103-9109.
Bradley LH, Kleiner RE, Wang AF, Hecht MH & Wood DW (2005) An Intein-Based Genetic Selection Enables Construction of a High-Quality Library of Binary Patterned De Novo Sequences. Protein Engineering, Design and Selection 18, 201-207.
Klepeis JL, Wei Y, Hecht MH & Floudas CA (2004) Ab Initio Prediction of the 3-Dimensional Structure of a De Novo Designed Protein: A Double Blind Case Study. Proteins: Structure, Function, and Bioinformatics 58, 560-570.
Hecht MH, Das A, Go A, Bradley LH, Wei Y (2004) De Novo Proteins From Designed Combinatorial Libraries.Protein Science 13, 1711-1723.
Wei Y & Hecht MH (2004) Enzyme-like Proteins From an Unselected Library of Designed Amino Acid Sequences.Protein Engineering, Design and Selection 17, 67-75.
Wei Y, Kim S, Fela D, Baum J, & Hecht MH (2003) Solution Structure of a De Novo Protein From a Designed Combinatorial Library. Proc. Natl. Acad. Sci. (USA) 100, 13270-13273.
Moffet DA, Foley J, & Hecht MH (2003) Midpoint Reduction Potentials and Heme Binding Stoichiometries of De Novo Proteins from Designed Combinatorial Libraries.Biophysical Chemistry 105, 231-239.
Wei Y, Liu T, Sazinsky SL, Moffet DA, Pelczer I, & Hecht MH (2003) Stably Folded De Novo Proteins From a Designed Combinatorial Library. Protein Science 12, 92-102.
Wang W, & Hecht MH (2002) Rationally Designed Mutations Convert De Novo Amyloid-Like Fibrils into Soluble Monomeric β-Sheet Proteins. Proc. Natl Acad. Sci.(USA) 99, 2760-2765.
Brown CL, Aksay IA, Saville DA, & Hecht MH (2002) Template-Directed Assembly of a De Novo Designed Protein. J. Am. Chem. Soc. 124, 6846-6848.
Moffet DA & Hecht MH (2001) De Novo Proteins From Combinatorial Libraries. Chemical Reviews 101, 3191-3204.
Xu, G, Wang W, Groves JT, Hecht MH (2001) Self-Assembled Monolayers from a Designed Combinatorial Library of De Novo Beta-Sheet Proteins. Proc. Natl. Acad. Sci. (USA)98, 3652-3657.
Moffet DA, Case MA, House JC, Vogel K, Williams R, Spiro TG, McLendon GL, Hecht MH (2001) Carbon Monoxide Binding by De Novo Heme Proteins From a Designed Combinatorial Library. J. Am. Chem. Soc. 123, 2109-2115.
Moffet DA, Certain LK, Smith AJ, Kessel AJ, Beckwith KA &Hecht MH (2000) Peroxidase Activity in Heme Proteins Derived From a Designed Combinatorial Library. J. Am. Chem. Soc. 122, 7612-7613.
Roy S & Hecht MH (2000) Cooperative Thermal Denaturation of Proteins Designed by Binary Patterning of Polar and Nonpolar Amino Acids. Biochemistry 39, 4603-4607.
Broome BM & Hecht MH (2000) Nature Disfavors Sequences of Alternating Polar and Nonpolar Amino Acids: Implications for Amyloidogenesis. J. Molecular Biology 296, 961-968.
West MW, Wang W, Patterson J, Mancias JD, Beasley JR & Hecht MH (1999) De Novo Amyloid Proteins From Designed Combinatorial Libraries. Proc. Natl. Acad. Sci. (USA) 96, 11211-11216.
Rosenbaum DM, Roy S, & Hecht MH (1999) Screening Combinatorial Libraries of De Novo Proteins By Hydrogen-Deuterium Exchange and Electrospray Mass Spectrometry. J. Am. Chem. Soc. 121, 9509-9513.
Rojas NR, Kamtekar S, Simons CT, McLean JE, Vogel KM, Spiro TG, Farid RS & Hecht MH (1997) De Novo Heme Proteins From Designed Combinatorial Libraries. Protein Science 6, 2512-2524.
West MW & Hecht MH (1995) Binary Patterning of Polar and Nonpolar Amino Acids in the Sequences and Structures of Native Proteins. Protein Science 4, 2032-2039.
Xiong H, Buckwalter BL, Shieh HM & Hecht MH (1995) Periodicity of Polar and Non-Polar Amino Acids is the Major Determinant of Secondary Structure in Self-Assembling Oligomeric Peptides. Proc. Natl. Acad. Sci. (USA) 92, 6349-6353.
Johnson BH & Hecht MH (1994) Recombinant Proteins Can Be Released From E. Coli Cells By Repeated Cycles of Freezing and Thawing. Biotechnology 12, 1357-1360.
Kamtekar S, Schiffer JM, Xiong H, Babik JM & Hecht MH (1993) Protein Design by Binary Patterning of Polar and Non-Polar Amino Acids. Science 262, 1680-1685.
Brunet AP, Huang ES, Huffine ME, Loeb JE, Weltman RJ & Hecht MH (1993) The Role of Turns in Dictating the Structure of an Alpha-Helical Protein. Nature 364, 355-358.

Alzheimer’s Research
McKoy AF, Chen J, Schupbach T & Hecht MH (2014) Structure Activity Relationships for a Series of Compounds that Inhibit Aggregation of the Alzheimer’s Peptide, AβChemical Biology & Drug Design.
Fortner-McKoy A, Chen J, Schupback T & Hecht MH (2012) A Novel Inhibitor of Amyloid β (Aβ) Peptide AggregationThe Journal of Biological Chemistry, Vol. 287 No. 46, 38992-39000.
Armstrong AH, Chen J, Fortner-McKoy A & Hecht MH (2011) Mutations that replace aromatic side chains promote aggregation of the Alzheimer’s Aβ peptide. Biochemistry 50, 4058–4067.
Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like Aggregates Sequester Numerous Metastable Proteins with Essential Cellular Functions. Cell 144, 67-78.
Chen J, Armstrong AH, Koehler AN & Hecht MH (2010) Small Molecule Microarrays Enable the Discovery of Compounds that Bind the Alzheimer’s Ab Peptide and Reduce Cytotoxicity. J. Am. Chem. Soc. 132, 17015-17022.
Kim W, Hecht MH (2008) Mutations Enhance the Aggregation Propensity of the Alzheimer’s Ab Peptide. J. Molec. Biology 377, 565-574.
Wurth C, Kim W, & Hecht MH (2006) Combinatorial Approaches to Probe the Sequence Determinants of Protein Aggregation and Amyloidogenesis. Protein and Peptide Letters 13, 279-286.
Kim W & Hecht MH (2006) Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer’s Abeta42 peptide. Proc. Natl. Acad. Sci. 103, 15824-15829.
Kim W, Kim Y, Min J, Kim DJ, Chang YT, & Hecht MH (2006) A High-Throughput Screen for Compounds That Inhibit Aggregation of the Alzheimer’s Peptide. ACS Chemical Biology 1, 461-469.
Kim W & Hecht MH (2005) Mutagenesis of the Carboxy-Terminal Residues of the Alzheimer’s Peptide: Sequence Determinants of Enhanced Amyloidogenicity of A-Beta42 Relative to A-Beta40. J. Biological Chemistry 280, 35069-35076.
Wurth C, Guimard NK, & Hecht MH. (2002) Mutations that Reduce Aggregation of the Alzheimer’s A-Beta42 Peptide: An Unbiased Search for the Sequence Determinants of A-Beta Amyloidogenesis. J. Molec. Biology 319, 1279-1290.